Coordinate Regulation of Glycolytic Gene Expression in Saccharomyces Cerevisiae

Coordinate Regulation of Glycolytic Gene Expression in Saccharomyces Cerevisiae PDF Author: Chang Seo Park
Publisher:
ISBN:
Category :
Languages : en
Pages : 384

Get Book Here

Book Description

Coordinate Regulation of Glycolytic Gene Expression in Saccharomyces Cerevisiae

Coordinate Regulation of Glycolytic Gene Expression in Saccharomyces Cerevisiae PDF Author: Chang Seo Park
Publisher:
ISBN:
Category :
Languages : en
Pages : 384

Get Book Here

Book Description


Glycolytic Gene Expression in Saccharomyces Cerevisiae

Glycolytic Gene Expression in Saccharomyces Cerevisiae PDF Author: Paul A. Moore
Publisher:
ISBN:
Category : Gene expression
Languages : en
Pages : 0

Get Book Here

Book Description


Regulation of the GCV3 Gene in Saccharomyces Cerevisiae

Regulation of the GCV3 Gene in Saccharomyces Cerevisiae PDF Author: Yun Zheng
Publisher:
ISBN:
Category : Gene expression
Languages : en
Pages : 0

Get Book Here

Book Description
The glycine cleavage system (GCS) is a multienzyme complex containing four proteins. The GCS, which is important for the growth and viability of organisms ranging from bacteria to humans, catalyses the oxidative cleavage of glycine into CO 2 and NH 3 . Concomitantly it generates the C1-donor 5,10-methylenetetrahydrofolate and the electron donor NADH. NH 3 is an important precursor for cellular nitrogen metabolism. The C1-donor 5,10-methylenetetrahydrofolate is a precursor for the biosynthesis of C1-end products such as adenine, thymidylate, serine and methionine. The goal of my research was to study the regulatory mechanisms controlling GCS activity. The expression of GCV3, a yeast gene that codes for one of the four GCS subunits, was analyzed in detail. This revealed that GCV3 expression is regulated by the availability of glycine, and cellular demand for the metabolic products of glycine cleavage. 10 mM glycine in minimal medium (SD) induced GCV3 expression about 4-fold. Supplementing with the C1-metabolic end products repressed GCV3 expression about 3-fold. Both glycine induction and repression by the C1-end products were found to be Bas1p-dependent. The upstream promoter elements required for regulation by Bas1p were localized. Expression of GCV3 is also subject to the general control system in a Gcn4p-dependent fashion. The elements utilized by Gcn4p have been characterized. A GATAA sequence located at -167bp upstream of the start codon is used by the nitrogen regulation system. Gcr1p, a transcription activator for glycolytic genes, is involved in regulating GCV3 in the presence of glucose. Evidences are also presented for an as yet unidentified regulator that represses expression in SD. Additional results presented in this thesis suggest that Rap1p, Nil1p, Ure2p and Deb1p also regulate GCV3.

Coordinate Regulation of Lipid Biosynthesis in Saccharomyces Cerevisiae

Coordinate Regulation of Lipid Biosynthesis in Saccharomyces Cerevisiae PDF Author: Robert Bruce Vail
Publisher:
ISBN:
Category :
Languages : en
Pages : 326

Get Book Here

Book Description


Glycolysis at 75: Is it Time to Tweak the First Elucidated Metabolic Pathway in History?

Glycolysis at 75: Is it Time to Tweak the First Elucidated Metabolic Pathway in History? PDF Author: Avital Schurr
Publisher: Frontiers Media SA
ISBN: 2889195864
Category : Medicine (General)
Languages : en
Pages : 128

Get Book Here

Book Description
Glycolysis, the pathway of enzymatic reactions responsible for the breakdown of glucose into two trioses and further into pyruvate or lactate, was elucidated in 1940. For more than seven decades, it has been taught precisely the way its sequence was proposed by Embden, Meyerhof and Parnas. Accordingly, two outcomes of this pathway were proposed, an aerobic glycolysis, with pyruvate as its final product, and an anaerobic glycolysis, identical to the aerobic one, except for an additional reaction, where pyruvate is reduced to lactate. Several studies in the 1980s have shown that both muscle and brain tissues can oxidize and utilize lactate as an energy substrate, challenging this monocarboxylate’s reputation as a useless end-product of anaerobic glycolysis. These findings were met with great skepticism about the idea that lactate could be playing a role in bioenergetics. In the past quarter of a century monocarboxylate transporters (MCTs) were identified and localized in both cellular and mitochondrial membranes. A lactate receptor has been identified. Direct and indirect evidence now indicate that the enzyme lactate dehydrogenase (LDH) resides not only in the cytosol, as part of the glycolytic pathway machinery, but also in the mitochondrial outer membrane. The mitochondrial form of the enzyme oxidizes lactate to pyruvate and concomitantly produces the reducing agent NADH. These findings have shed light on a major drawback of the originally proposed aerobic version of the glycolytic pathway i.e., its inability to regenerate NAD+, as opposed to anaerobic glycolysis that features the cyclical ability of regenerating NAD+ upon pyruvate reduction to lactate by the cytosolic form of LDH. The malate-aspartate shuttle (MAS), a major redox shuttle in the brain, was proposed as an alternative pathway for NAD+ generation for aerobic glycolysis. Nonetheless, would MAS really be necessary for that function if glycolysis always proceeds to the end-products, lactate and NAD+? An additional dilemma the originally proposed aerobic glycolysis presents has to do with the glycolytic pathway of erythrocytes, which despite its highly aerobic environment, always produces lactate as its end-product. It is time to reexamine the original, dogmatic separation of glycolysis into two distinct pathways and put to test the hypothesis of a unified, singular pathway, the end-product of which is lactate, the real substrate of the mitochondrial TCA cycle.

Systems Biology

Systems Biology PDF Author: Lilia Alberghina
Publisher: Springer Science & Business Media
ISBN: 9783540742692
Category : Computers
Languages : en
Pages : 432

Get Book Here

Book Description
For life to be understood and disease to become manageable, the wealth of postgenomic data now needs to be made dynamic. This development requires systems biology, integrating computational models for cells and organisms in health and disease; quantitative experiments (high-throughput, genome-wide, living cell, in silico); and new concepts and principles concerning interactions. This book defines the new field of systems biology and discusses the most efficient experimental and computational strategies. The benefits for industry, such as the new network-based drug-target design validation, and testing, are also presented.

Introduction to Epigenetics

Introduction to Epigenetics PDF Author: Renato Paro
Publisher: Springer Nature
ISBN: 3030686701
Category : Science
Languages : en
Pages : 215

Get Book Here

Book Description
This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease

Innovative Medicine

Innovative Medicine PDF Author: Kazuwa Nakao
Publisher: Springer
ISBN: 4431556516
Category : Science
Languages : en
Pages : 330

Get Book Here

Book Description
This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.

Quantitative Proteomics

Quantitative Proteomics PDF Author: Claire E Eyers
Publisher: Royal Society of Chemistry
ISBN: 1849738084
Category : Science
Languages : en
Pages : 391

Get Book Here

Book Description
As a component of post-genome science, the field of proteomics has assumed great prominence in recent years. Whereas quantitative analyses focussed initially on relative quantification, a greater emphasis is now placed on absolute quantification and consideration of proteome dynamics. Coverage of the topic of quantitative proteomics requires consideration both of the analytical fundamentals of quantitative mass spectrometry and the specific demands of the problem being addressed. Quantitative Proteomics aims to outline the state of the art in mass spectrometry-based quantitative proteomics, describing recent advances and current limitations in the instrumentation used, together with the various methods employed for generating high quality data. Details on both strategies describing how stable isotope labelling can be applied and methods for performing quantitative analysis of proteins in a label-free manner are given. The utility of these strategies to understanding cellular protein dynamics are then exemplified with chapters looking at spatial proteomics, dynamics of protein function as determined by quantifying changes in protein post-translational modification and protein turnover. Finally, a key application of these techniques to biomarker discovery and validation is presented, together with the rapidly developing area of quantitative analysis of protein-based foodstuffs. This exemplary book is essential reading for analytical and biological mass spectrometrists working in proteomics research, as well as those undertaking either fundamental or clinical-based investigations with an interest in understanding protein dynamics and/or biomarker assessment.

Metabolism and Molecular Physiology of Saccharomyces Cerevisiae

Metabolism and Molecular Physiology of Saccharomyces Cerevisiae PDF Author: J. Richard Dickinson
Publisher: CRC Press
ISBN: 0203503864
Category : Science
Languages : en
Pages : 476

Get Book Here

Book Description
Since the publication of the best-selling first edition, much has been discovered about Saccharomyces cerevisiae, the single-celled fungus commonly known as baker's yeast or brewer's yeast that is the basis for much of our understanding of the molecular and cellular biology of eukaryotes. This wealth of new research data demands our attention and r