Author: Brett Koonce
Publisher:
ISBN: 9781484261699
Category :
Languages : en
Pages : 0
Book Description
Dive into and apply practical machine learning and dataset categorization techniques while learning Tensorflow and deep learning. This book uses convolutional neural networks to do image recognition all in the familiar and easy to work with Swift language. It begins with a basic machine learning overview and then ramps up to neural networks and convolutions and how they work. Using Swift and Tensorflow, you'll perform data augmentation, build and train large networks, and build networks for mobile devices. You'll also cover cloud training and the network you build can categorize greyscale data, such as mnist, to large scale modern approaches that can categorize large datasets, such as imagenet. Convolutional Neural Networks with Swift for Tensorflow uses a simple approach that adds progressive layers of complexity until you have arrived at the current state of the art for this field. You will: Categorize and augment datasets Build and train large networks, including via cloud solutions Deploy complex systems to mobile devices.
Convolutional Neural Networks with Swift for Tensorflow
Author: Brett Koonce
Publisher:
ISBN: 9781484261699
Category :
Languages : en
Pages : 0
Book Description
Dive into and apply practical machine learning and dataset categorization techniques while learning Tensorflow and deep learning. This book uses convolutional neural networks to do image recognition all in the familiar and easy to work with Swift language. It begins with a basic machine learning overview and then ramps up to neural networks and convolutions and how they work. Using Swift and Tensorflow, you'll perform data augmentation, build and train large networks, and build networks for mobile devices. You'll also cover cloud training and the network you build can categorize greyscale data, such as mnist, to large scale modern approaches that can categorize large datasets, such as imagenet. Convolutional Neural Networks with Swift for Tensorflow uses a simple approach that adds progressive layers of complexity until you have arrived at the current state of the art for this field. You will: Categorize and augment datasets Build and train large networks, including via cloud solutions Deploy complex systems to mobile devices.
Publisher:
ISBN: 9781484261699
Category :
Languages : en
Pages : 0
Book Description
Dive into and apply practical machine learning and dataset categorization techniques while learning Tensorflow and deep learning. This book uses convolutional neural networks to do image recognition all in the familiar and easy to work with Swift language. It begins with a basic machine learning overview and then ramps up to neural networks and convolutions and how they work. Using Swift and Tensorflow, you'll perform data augmentation, build and train large networks, and build networks for mobile devices. You'll also cover cloud training and the network you build can categorize greyscale data, such as mnist, to large scale modern approaches that can categorize large datasets, such as imagenet. Convolutional Neural Networks with Swift for Tensorflow uses a simple approach that adds progressive layers of complexity until you have arrived at the current state of the art for this field. You will: Categorize and augment datasets Build and train large networks, including via cloud solutions Deploy complex systems to mobile devices.
Pattern Recognition
Author: Apostolos Antonacopoulos
Publisher: Springer Nature
ISBN: 3031781694
Category :
Languages : en
Pages : 510
Book Description
Publisher: Springer Nature
ISBN: 3031781694
Category :
Languages : en
Pages : 510
Book Description
Deep Learning with Swift for TensorFlow
Author: Rahul Bhalley
Publisher: Apress
ISBN: 9781484263297
Category : Computers
Languages : en
Pages : 287
Book Description
Discover more insight about deep learning and how to work with Swift for TensorFlow to develop intelligent apps. TensorFlow was designed for easy adoption by iOS programmers working in Swift. This book covers the established and tested concepts and ties them to modern Swift programming and applicable use in developing for iOS. Using illustrative examples, the book starts off by introducing you to basic machine learning concepts along with code snippets in Swift for TensorFlow.. Fundamentals of neural networks required to understand today’s deep learning research will be covered and put in the context of working in the Swift language with the goal of developing primarily for Apple’s mobile ecosystem. Other important topics covered include computation graphs, loss functions, optimization techniques, regulazrizing nueral networks, recurrent neural networks—such as those used in Siri and Google Translate; and convolutional neural networks. You'll also learn to reuse pre-trained neural networks and work with generative models. Finally, developing and building in security to models is addressed. Swift code will be provided throughout the book to keep the concepts grounded in application within Apple’s frameworks. What You'll Learn • Write machine learning code in Swift • Run neural networks in Apple environments • Apply fundamental deep learning concepts to mobile app development Who This Book Is For Programmers familiar with Swift and the basics of AI
Publisher: Apress
ISBN: 9781484263297
Category : Computers
Languages : en
Pages : 287
Book Description
Discover more insight about deep learning and how to work with Swift for TensorFlow to develop intelligent apps. TensorFlow was designed for easy adoption by iOS programmers working in Swift. This book covers the established and tested concepts and ties them to modern Swift programming and applicable use in developing for iOS. Using illustrative examples, the book starts off by introducing you to basic machine learning concepts along with code snippets in Swift for TensorFlow.. Fundamentals of neural networks required to understand today’s deep learning research will be covered and put in the context of working in the Swift language with the goal of developing primarily for Apple’s mobile ecosystem. Other important topics covered include computation graphs, loss functions, optimization techniques, regulazrizing nueral networks, recurrent neural networks—such as those used in Siri and Google Translate; and convolutional neural networks. You'll also learn to reuse pre-trained neural networks and work with generative models. Finally, developing and building in security to models is addressed. Swift code will be provided throughout the book to keep the concepts grounded in application within Apple’s frameworks. What You'll Learn • Write machine learning code in Swift • Run neural networks in Apple environments • Apply fundamental deep learning concepts to mobile app development Who This Book Is For Programmers familiar with Swift and the basics of AI
Generative Adversarial Networks in Practice
Author: Mehdi Ghayoumi
Publisher: CRC Press
ISBN: 1003805531
Category : Computers
Languages : en
Pages : 665
Book Description
This book is an all-inclusive resource that provides a solid foundation on Generative Adversarial Networks (GAN) methodologies, their application to real-world projects, and their underlying mathematical and theoretical concepts. Key Features: • Guides you through the complex world of GANs, demystifying their intricacies • Accompanies your learning journey with real-world examples and practical applications • Navigates the theory behind GANs, presenting it in an accessible and comprehensive way • Simplifies the implementation of GANs using popular deep learning platforms • Introduces various GAN architectures, giving readers a broad view of their applications • Nurture your knowledge of AI with our comprehensive yet accessible content • Practice your skills with numerous case studies and coding examples • Reviews advanced GANs, such as DCGAN, cGAN, and CycleGAN, with clear explanations and practical examples • Adapts to both beginners and experienced practitioners, with content organized to cater to varying levels of familiarity with GANs • Connects the dots between GAN theory and practice, providing a well-rounded understanding of the subject • Takes you through GAN applications across different data types, highlighting their versatility • Inspires the reader to explore beyond this book, fostering an environment conducive to independent learning and research • Closes the gap between complex GAN methodologies and their practical implementation, allowing readers to directly apply their knowledge • Empowers you with the skills and knowledge needed to confidently use GANs in your projects Prepare to deep dive into the captivating realm of GANs and experience the power of AI like never before with Generative Adversarial Networks (GANs) in Practice. This book brings together the theory and practical aspects of GANs in a cohesive and accessible manner, making it an essential resource for both beginners and experienced practitioners.
Publisher: CRC Press
ISBN: 1003805531
Category : Computers
Languages : en
Pages : 665
Book Description
This book is an all-inclusive resource that provides a solid foundation on Generative Adversarial Networks (GAN) methodologies, their application to real-world projects, and their underlying mathematical and theoretical concepts. Key Features: • Guides you through the complex world of GANs, demystifying their intricacies • Accompanies your learning journey with real-world examples and practical applications • Navigates the theory behind GANs, presenting it in an accessible and comprehensive way • Simplifies the implementation of GANs using popular deep learning platforms • Introduces various GAN architectures, giving readers a broad view of their applications • Nurture your knowledge of AI with our comprehensive yet accessible content • Practice your skills with numerous case studies and coding examples • Reviews advanced GANs, such as DCGAN, cGAN, and CycleGAN, with clear explanations and practical examples • Adapts to both beginners and experienced practitioners, with content organized to cater to varying levels of familiarity with GANs • Connects the dots between GAN theory and practice, providing a well-rounded understanding of the subject • Takes you through GAN applications across different data types, highlighting their versatility • Inspires the reader to explore beyond this book, fostering an environment conducive to independent learning and research • Closes the gap between complex GAN methodologies and their practical implementation, allowing readers to directly apply their knowledge • Empowers you with the skills and knowledge needed to confidently use GANs in your projects Prepare to deep dive into the captivating realm of GANs and experience the power of AI like never before with Generative Adversarial Networks (GANs) in Practice. This book brings together the theory and practical aspects of GANs in a cohesive and accessible manner, making it an essential resource for both beginners and experienced practitioners.
Machine Learning with Swift
Author: Oleksandr Sosnovshchenko
Publisher: Packt Publishing Ltd
ISBN: 1787123529
Category : Computers
Languages : en
Pages : 371
Book Description
Leverage the power of machine learning and Swift programming to build intelligent iOS applications with ease Key Features Implement effective machine learning solutions for your iOS applications Use Swift and Core ML to build and deploy popular machine learning models Develop neural networks for natural language processing and computer vision Book Description Machine learning as a field promises to bring increased intelligence to the software by helping us learn and analyse information efficiently and discover certain patterns that humans cannot. This book will be your guide as you embark on an exciting journey in machine learning using the popular Swift language. We’ll start with machine learning basics in the first part of the book to develop a lasting intuition about fundamental machine learning concepts. We explore various supervised and unsupervised statistical learning techniques and how to implement them in Swift, while the third section walks you through deep learning techniques with the help of typical real-world cases. In the last section, we will dive into some hard core topics such as model compression, GPU acceleration and provide some recommendations to avoid common mistakes during machine learning application development. By the end of the book, you'll be able to develop intelligent applications written in Swift that can learn for themselves. What you will learn Learn rapid model prototyping with Python and Swift Deploy pre-trained models to iOS using Core ML Find hidden patterns in the data using unsupervised learning Get a deeper understanding of the clustering techniques Learn modern compact architectures of neural networks for iOS devices Train neural networks for image processing and natural language processing Who this book is for iOS developers who wish to create smarter iOS applications using the power of machine learning will find this book to be useful. This book will also benefit data science professionals who are interested in performing machine learning on mobile devices. Familiarity with Swift programming is all you need to get started with this book.
Publisher: Packt Publishing Ltd
ISBN: 1787123529
Category : Computers
Languages : en
Pages : 371
Book Description
Leverage the power of machine learning and Swift programming to build intelligent iOS applications with ease Key Features Implement effective machine learning solutions for your iOS applications Use Swift and Core ML to build and deploy popular machine learning models Develop neural networks for natural language processing and computer vision Book Description Machine learning as a field promises to bring increased intelligence to the software by helping us learn and analyse information efficiently and discover certain patterns that humans cannot. This book will be your guide as you embark on an exciting journey in machine learning using the popular Swift language. We’ll start with machine learning basics in the first part of the book to develop a lasting intuition about fundamental machine learning concepts. We explore various supervised and unsupervised statistical learning techniques and how to implement them in Swift, while the third section walks you through deep learning techniques with the help of typical real-world cases. In the last section, we will dive into some hard core topics such as model compression, GPU acceleration and provide some recommendations to avoid common mistakes during machine learning application development. By the end of the book, you'll be able to develop intelligent applications written in Swift that can learn for themselves. What you will learn Learn rapid model prototyping with Python and Swift Deploy pre-trained models to iOS using Core ML Find hidden patterns in the data using unsupervised learning Get a deeper understanding of the clustering techniques Learn modern compact architectures of neural networks for iOS devices Train neural networks for image processing and natural language processing Who this book is for iOS developers who wish to create smarter iOS applications using the power of machine learning will find this book to be useful. This book will also benefit data science professionals who are interested in performing machine learning on mobile devices. Familiarity with Swift programming is all you need to get started with this book.
Brain Informatics
Author: Feng Liu
Publisher: Springer Nature
ISBN: 3031430751
Category : Computers
Languages : en
Pages : 484
Book Description
This book constitutes the proceedings of the 16th International Conference on Brain Informatics, BI 2023, which was held in Hoboken, NJ, USA, during August 1–3, 2023. The 40 full papers presented in this book were carefully reviewed and selected from 101 submissions. The papers are divided into the following topical sections: cognitive and computational foundations of brain science; investigations of human Information processing systems; brain big data analytics, curation and management; informatics paradigms for brain and mental health research; brain-machine intelligence and brain-inspired computing; and the 5th international workshop on cognitive neuroscience of thinking and reasoning.
Publisher: Springer Nature
ISBN: 3031430751
Category : Computers
Languages : en
Pages : 484
Book Description
This book constitutes the proceedings of the 16th International Conference on Brain Informatics, BI 2023, which was held in Hoboken, NJ, USA, during August 1–3, 2023. The 40 full papers presented in this book were carefully reviewed and selected from 101 submissions. The papers are divided into the following topical sections: cognitive and computational foundations of brain science; investigations of human Information processing systems; brain big data analytics, curation and management; informatics paradigms for brain and mental health research; brain-machine intelligence and brain-inspired computing; and the 5th international workshop on cognitive neuroscience of thinking and reasoning.
Revolutionizing AI with Brain-Inspired Technology: Neuromorphic Computing
Author: Lilhore, Umesh Kumar
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 564
Book Description
As artificial intelligence (AI) continues to evolve, neuromorphic computing stands at the forefront of this revolution, offering a transformative approach by mimicking the structure and function of the human brain. This cutting-edge technology is reshaping AI, making it more efficient, adaptive, and capable of complex tasks that were once thought impossible. Neuromorphic computing has the potential to revolutionize industries such as healthcare, robotics, and autonomous vehicles, driving advancements that could redefine the future of technology and its applications in everyday life. Understanding this emerging field is crucial for anyone involved in AI development or interested in the next frontier of technological innovation. Revolutionizing AI with Brain-Inspired Technology: Neuromorphic Computing covers neuromorphic computing, its real-world applications, and the latest advancements pushing the boundaries of AI. By offering a comprehensive overview and inspiring new research, this book plays a pivotal role in shaping the future of AI and its impact on various sectors. This volume is an essential resource for researchers, academics, professionals, and policymakers who seek to understand the principles and potential of neuromorphic computing as well as the societal implications of these technologies.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 564
Book Description
As artificial intelligence (AI) continues to evolve, neuromorphic computing stands at the forefront of this revolution, offering a transformative approach by mimicking the structure and function of the human brain. This cutting-edge technology is reshaping AI, making it more efficient, adaptive, and capable of complex tasks that were once thought impossible. Neuromorphic computing has the potential to revolutionize industries such as healthcare, robotics, and autonomous vehicles, driving advancements that could redefine the future of technology and its applications in everyday life. Understanding this emerging field is crucial for anyone involved in AI development or interested in the next frontier of technological innovation. Revolutionizing AI with Brain-Inspired Technology: Neuromorphic Computing covers neuromorphic computing, its real-world applications, and the latest advancements pushing the boundaries of AI. By offering a comprehensive overview and inspiring new research, this book plays a pivotal role in shaping the future of AI and its impact on various sectors. This volume is an essential resource for researchers, academics, professionals, and policymakers who seek to understand the principles and potential of neuromorphic computing as well as the societal implications of these technologies.
Machine Learning by Tutorials (Second Edition)
Author: raywenderlich Tutorial Team
Publisher:
ISBN: 9781942878933
Category :
Languages : en
Pages :
Book Description
Learn Machine Learning!Machine learning is one of those topics that can be daunting at first blush. It's not clear where to start, what path someone should take and what APIs to learn in order to get started teaching machines how to learn.This is where Machine Learning by Tutorials comes in! In this book, we'll hold your hand through a number of tutorials, to get you started in the world of machine learning. We'll cover a wide range of popular topics in the field of machine learning, while developing apps that work on iOS devices.Who This Book Is ForThis books is for the intermediate iOS developer who already knows the basics of iOS and Swift development, but wants to understand how machine learning works.Topics covered in Machine Learning by TutorialsCoreML: Learn how to add a machine learning model to your iOS apps, and how to use iOS APIs to access it.Create ML: Learn how to create your own model using Apple's Create ML Tool.Turi Create and Keras: Learn how to tune parameters to improve your machine learning model using more advanced tools.Image Classification: Learn how to apply machine learning models to predict objects in an image.Convolutional Networks: Learn advanced machine learning techniques for predicting objects in an image with Convolutional Neural Networks (CNNs).Sequence Classification: Learn how you can use recurrent neural networks (RNNs) to classify motion from an iPhone's motion sensor.Text-to-text Transform: Learn how to use machine learning to convert bodies of text between two languages.By the end of this book, you'll have a firm understanding of what machine learning is, what it can and cannot do, and how you can use machine learning in your next app!
Publisher:
ISBN: 9781942878933
Category :
Languages : en
Pages :
Book Description
Learn Machine Learning!Machine learning is one of those topics that can be daunting at first blush. It's not clear where to start, what path someone should take and what APIs to learn in order to get started teaching machines how to learn.This is where Machine Learning by Tutorials comes in! In this book, we'll hold your hand through a number of tutorials, to get you started in the world of machine learning. We'll cover a wide range of popular topics in the field of machine learning, while developing apps that work on iOS devices.Who This Book Is ForThis books is for the intermediate iOS developer who already knows the basics of iOS and Swift development, but wants to understand how machine learning works.Topics covered in Machine Learning by TutorialsCoreML: Learn how to add a machine learning model to your iOS apps, and how to use iOS APIs to access it.Create ML: Learn how to create your own model using Apple's Create ML Tool.Turi Create and Keras: Learn how to tune parameters to improve your machine learning model using more advanced tools.Image Classification: Learn how to apply machine learning models to predict objects in an image.Convolutional Networks: Learn advanced machine learning techniques for predicting objects in an image with Convolutional Neural Networks (CNNs).Sequence Classification: Learn how you can use recurrent neural networks (RNNs) to classify motion from an iPhone's motion sensor.Text-to-text Transform: Learn how to use machine learning to convert bodies of text between two languages.By the end of this book, you'll have a firm understanding of what machine learning is, what it can and cannot do, and how you can use machine learning in your next app!
Pattern Recognition
Author: Huimin Lu
Publisher: Springer Nature
ISBN: 3031476654
Category : Computers
Languages : en
Pages : 415
Book Description
This three-volume set LNCS 14406-14408 constitutes the refereed proceedings of the 7th Asian Conference on Pattern Recognition, ACPR 2023, held in Kitakyushu, Japan, in November 2023. The 93 full papers presented were carefully reviewed and selected from 164 submissions. The conference focuses on four important areas of pattern recognition: pattern recognition and machine learning, computer vision and robot vision, signal processing, and media processing and interaction, covering various technical aspects.
Publisher: Springer Nature
ISBN: 3031476654
Category : Computers
Languages : en
Pages : 415
Book Description
This three-volume set LNCS 14406-14408 constitutes the refereed proceedings of the 7th Asian Conference on Pattern Recognition, ACPR 2023, held in Kitakyushu, Japan, in November 2023. The 93 full papers presented were carefully reviewed and selected from 164 submissions. The conference focuses on four important areas of pattern recognition: pattern recognition and machine learning, computer vision and robot vision, signal processing, and media processing and interaction, covering various technical aspects.
Proceedings of the 10th International Conference on Advanced Intelligent Systems and Informatics 2024
Author: Aboul Ella Hassanien
Publisher: Springer Nature
ISBN: 3031716191
Category :
Languages : en
Pages : 403
Book Description
Publisher: Springer Nature
ISBN: 3031716191
Category :
Languages : en
Pages : 403
Book Description