Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Get Book Here

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Get Book Here

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Geometric Programming for Communication Systems

Geometric Programming for Communication Systems PDF Author: Mung Chiang
Publisher: Now Publishers Inc
ISBN: 9781933019093
Category : Computers
Languages : en
Pages : 172

Get Book Here

Book Description
Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. Geometric Programming for Communication Systems begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in this area, which are currently scattered in several books and many research papers, as well as to date unpublished results. Geometric Programming for Communication Systems is intended for researchers and students who wish to have a comprehensive starting point for understanding the theory and applications of geometric programming in communication systems.

Convex Optimization Theory

Convex Optimization Theory PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529310
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).

Computational Mathematics and Applications

Computational Mathematics and Applications PDF Author: Dia Zeidan
Publisher: Springer Nature
ISBN: 9811584982
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
This book is a collection of invited and reviewed chapters on state-of-the-art developments in interdisciplinary mathematics. The book discusses recent developments in the fields of theoretical and applied mathematics, covering areas of interest to mathematicians, scientists, engineers, industrialists, researchers, faculty, and students. Readers will be exposed to topics chosen from a wide range of areas including differential equations, integral reforms, operational calculus, numerical analysis, fluid mechanics, and computer science. The aim of the book is to provide brief and reliably expressed research topics that will enable those new or not aware of mathematical sciences in this part of the world. While the book has not been precisely planned to address any branch of mathematics, it presents contributions of the relevant topics to do so. The topics chosen for the book are those that we have found of significant interest to many researchers in the world. These also are topics that are applicable in many fields of computational and applied mathematics. This book constitutes the first attempt in Jordanian literature to scientifically consider the extensive need of research development at the national and international levels with which mathematics deals. The book grew not only from the international collaboration between the authors but rather from the long need for a research-based book from different parts of the world for researchers and professionals working in computational and applied mathematics. This is the modified version of the back-cover content on the print book

Statistical Inference Via Convex Optimization

Statistical Inference Via Convex Optimization PDF Author: Anatoli Juditsky
Publisher: Princeton University Press
ISBN: 0691197296
Category : Mathematics
Languages : en
Pages : 655

Get Book Here

Book Description
This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.

Chordal Graphs and Semidefinite Optimization

Chordal Graphs and Semidefinite Optimization PDF Author: Lieven Vandenberghe
Publisher: Foundations and Trends (R) in Optimization
ISBN: 9781680830385
Category :
Languages : en
Pages : 216

Get Book Here

Book Description
Covers the theory and applications of chordal graphs, with an emphasis on algorithms developed in the literature on sparse Cholesky factorization. It shows how these techniques can be applied in algorithms for sparse semidefinite optimization, and points out the connections with related topics outside semidefinite optimization.

Proceedings

Proceedings PDF Author:
Publisher:
ISBN:
Category : Computer networks
Languages : en
Pages : 642

Get Book Here

Book Description


Facets of Combinatorial Optimization

Facets of Combinatorial Optimization PDF Author: Michael Jünger
Publisher: Springer Science & Business Media
ISBN: 3642381898
Category : Mathematics
Languages : en
Pages : 510

Get Book Here

Book Description
Martin Grötschel is one of the most influential mathematicians of our time. He has received numerous honors and holds a number of key positions in the international mathematical community. He celebrated his 65th birthday on September 10, 2013. Martin Grötschel’s doctoral descendant tree 1983–2012, i.e., the first 30 years, features 39 children, 74 grandchildren, 24 great-grandchildren and 2 great-great-grandchildren, a total of 139 doctoral descendants. This book starts with a personal tribute to Martin Grötschel by the editors (Part I), a contribution by his very special “predecessor” Manfred Padberg on “Facets and Rank of Integer Polyhedra” (Part II), and the doctoral descendant tree 1983–2012 (Part III). The core of this book (Part IV) contains 16 contributions, each of which is coauthored by at least one doctoral descendant. The sequence of the articles starts with contributions to the theory of mathematical optimization, including polyhedral combinatorics, extended formulations, mixed-integer convex optimization, super classes of perfect graphs, efficient algorithms for subtree-telecenters, junctions in acyclic graphs and preemptive restricted strip covering, as well as efficient approximation of non-preemptive restricted strip covering. Combinations of new theoretical insights with algorithms and experiments deal with network design problems, combinatorial optimization problems with submodular objective functions and more general mixed-integer nonlinear optimization problems. Applications include VLSI layout design, systems biology, wireless network design, mean-risk optimization and gas network optimization. Computational studies include a semidefinite branch and cut approach for the max k-cut problem, mixed-integer nonlinear optimal control, and mixed-integer linear optimization for scheduling and routing of fly-in safari planes. The two closing articles are devoted to computational advances in general mixed integer linear optimization, the first by scientists working in industry, the second by scientists working in academia. These articles reflect the “scientific facets” of Martin Grötschel who has set standards in theory, computation and applications.

Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers

Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers PDF Author: Stephen Boyd
Publisher: Now Publishers Inc
ISBN: 160198460X
Category : Computers
Languages : en
Pages : 138

Get Book Here

Book Description
Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.

Big Data Optimization: Recent Developments and Challenges

Big Data Optimization: Recent Developments and Challenges PDF Author: Ali Emrouznejad
Publisher: Springer
ISBN: 3319302655
Category : Technology & Engineering
Languages : en
Pages : 492

Get Book Here

Book Description
The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.