Author: Yang Kuang
Publisher: Academic Press
ISBN: 0080960022
Category : Mathematics
Languages : en
Pages : 413
Book Description
Delay Differential Equations emphasizes the global analysis of full nonlinear equations or systems. The book treats both autonomous and nonautonomous systems with various delays. Key topics addressed are the possible delay influence on the dynamics of the system, such as stability switching as time delay increases, the long time coexistence of populations, and the oscillatory aspects of the dynamics. The book also includes coverage of the interplay of spatial diffusion and time delays in some diffusive delay population models. The treatment presented in this monograph will be of great value in the study of various classes of DDEs and their multidisciplinary applications.
Delay Differential Equations
Author: Yang Kuang
Publisher: Academic Press
ISBN: 0080960022
Category : Mathematics
Languages : en
Pages : 413
Book Description
Delay Differential Equations emphasizes the global analysis of full nonlinear equations or systems. The book treats both autonomous and nonautonomous systems with various delays. Key topics addressed are the possible delay influence on the dynamics of the system, such as stability switching as time delay increases, the long time coexistence of populations, and the oscillatory aspects of the dynamics. The book also includes coverage of the interplay of spatial diffusion and time delays in some diffusive delay population models. The treatment presented in this monograph will be of great value in the study of various classes of DDEs and their multidisciplinary applications.
Publisher: Academic Press
ISBN: 0080960022
Category : Mathematics
Languages : en
Pages : 413
Book Description
Delay Differential Equations emphasizes the global analysis of full nonlinear equations or systems. The book treats both autonomous and nonautonomous systems with various delays. Key topics addressed are the possible delay influence on the dynamics of the system, such as stability switching as time delay increases, the long time coexistence of populations, and the oscillatory aspects of the dynamics. The book also includes coverage of the interplay of spatial diffusion and time delays in some diffusive delay population models. The treatment presented in this monograph will be of great value in the study of various classes of DDEs and their multidisciplinary applications.
Differential Equations and Dynamical Systems
Author: Antonio Galves
Publisher: American Mathematical Soc.
ISBN: 9780821871386
Category : Mathematics
Languages : en
Pages : 376
Book Description
This volume contains contributed papers authored by participants of a Conference on Differential Equations and Dynamical Systems which was held at the Instituto Superior Tecnico (Lisbon, Portugal). The conference brought together a large number of specialists in the area of differential equations and dynamical systems and provided an opportunity to celebrate Professor Waldyr Oliva's 70th birthday, honoring his fundamental contributions to the field. The volume constitutes anoverview of the current research over a wide range of topics, extending from qualitative theory for (ordinary, partial or functional) differential equations to hyperbolic dynamics and ergodic theory.
Publisher: American Mathematical Soc.
ISBN: 9780821871386
Category : Mathematics
Languages : en
Pages : 376
Book Description
This volume contains contributed papers authored by participants of a Conference on Differential Equations and Dynamical Systems which was held at the Instituto Superior Tecnico (Lisbon, Portugal). The conference brought together a large number of specialists in the area of differential equations and dynamical systems and provided an opportunity to celebrate Professor Waldyr Oliva's 70th birthday, honoring his fundamental contributions to the field. The volume constitutes anoverview of the current research over a wide range of topics, extending from qualitative theory for (ordinary, partial or functional) differential equations to hyperbolic dynamics and ergodic theory.
Variational Convergence And Stochastic Homogenization Of Nonlinear Reaction-diffusion Problems
Author: Omar Anza Hafsa
Publisher: World Scientific
ISBN: 9811258503
Category : Mathematics
Languages : en
Pages : 321
Book Description
A substantial number of problems in physics, chemical physics, and biology, are modeled through reaction-diffusion equations to describe temperature distribution or chemical substance concentration. For problems arising from ecology, sociology, or population dynamics, they describe the density of some populations or species. In this book the state variable is a concentration, or a density according to the cases. The reaction function may be complex and include time delays terms that model various situations involving maturation periods, resource regeneration times, or incubation periods. The dynamics may occur in heterogeneous media and may depend upon a small or large parameter, as well as the reaction term. From a purely formal perspective, these parameters are indexed by n. Therefore, reaction-diffusion equations give rise to sequences of Cauchy problems.The first part of the book is devoted to the convergence of these sequences in a sense made precise in the book. The second part is dedicated to the specific case when the reaction-diffusion problems depend on a small parameter ∊ₙ intended to tend towards 0. This parameter accounts for the size of small spatial and randomly distributed heterogeneities. The convergence results obtained in the first part, with additionally some probabilistic tools, are applied to this specific situation. The limit problems are illustrated through biological invasion, food-limited or prey-predator models where the interplay between environment heterogeneities in the individual evolution of propagation species plays an essential role. They provide a description in terms of deterministic and homogeneous reaction-diffusion equations, for which numerical schemes are possible.
Publisher: World Scientific
ISBN: 9811258503
Category : Mathematics
Languages : en
Pages : 321
Book Description
A substantial number of problems in physics, chemical physics, and biology, are modeled through reaction-diffusion equations to describe temperature distribution or chemical substance concentration. For problems arising from ecology, sociology, or population dynamics, they describe the density of some populations or species. In this book the state variable is a concentration, or a density according to the cases. The reaction function may be complex and include time delays terms that model various situations involving maturation periods, resource regeneration times, or incubation periods. The dynamics may occur in heterogeneous media and may depend upon a small or large parameter, as well as the reaction term. From a purely formal perspective, these parameters are indexed by n. Therefore, reaction-diffusion equations give rise to sequences of Cauchy problems.The first part of the book is devoted to the convergence of these sequences in a sense made precise in the book. The second part is dedicated to the specific case when the reaction-diffusion problems depend on a small parameter ∊ₙ intended to tend towards 0. This parameter accounts for the size of small spatial and randomly distributed heterogeneities. The convergence results obtained in the first part, with additionally some probabilistic tools, are applied to this specific situation. The limit problems are illustrated through biological invasion, food-limited or prey-predator models where the interplay between environment heterogeneities in the individual evolution of propagation species plays an essential role. They provide a description in terms of deterministic and homogeneous reaction-diffusion equations, for which numerical schemes are possible.
Theory and Applications of Partial Functional Differential Equations
Author: Jianhong Wu
Publisher: Springer Science & Business Media
ISBN: 1461240506
Category : Mathematics
Languages : en
Pages : 441
Book Description
Abstract semilinear functional differential equations arise from many biological, chemical, and physical systems which are characterized by both spatial and temporal variables and exhibit various spatio-temporal patterns. The aim of this book is to provide an introduction of the qualitative theory and applications of these equations from the dynamical systems point of view. The required prerequisites for that book are at a level of a graduate student. The style of presentation will be appealing to people trained and interested in qualitative theory of ordinary and functional differential equations.
Publisher: Springer Science & Business Media
ISBN: 1461240506
Category : Mathematics
Languages : en
Pages : 441
Book Description
Abstract semilinear functional differential equations arise from many biological, chemical, and physical systems which are characterized by both spatial and temporal variables and exhibit various spatio-temporal patterns. The aim of this book is to provide an introduction of the qualitative theory and applications of these equations from the dynamical systems point of view. The required prerequisites for that book are at a level of a graduate student. The style of presentation will be appealing to people trained and interested in qualitative theory of ordinary and functional differential equations.
Discrete and Continuous Dynamical Systems
Author:
Publisher:
ISBN:
Category : Differentiable dynamical systems
Languages : en
Pages : 728
Book Description
Publisher:
ISBN:
Category : Differentiable dynamical systems
Languages : en
Pages : 728
Book Description
Numerical Methods for Delay Differential Equations
Author: Alfredo Bellen
Publisher: OUP Oxford
ISBN: 0191523135
Category : Mathematics
Languages : en
Pages : 410
Book Description
The main purpose of the book is to introduce the readers to the numerical integration of the Cauchy problem for delay differential equations (DDEs). Peculiarities and differences that DDEs exhibit with respect to ordinary differential equations are preliminarily outlined by numerous examples illustrating some unexpected, and often surprising, behaviours of the analytical and numerical solutions. The effect of various kinds of delays on the regularity of the solution is described and some essential existence and uniqueness results are reported. The book is centered on the use of Runge-Kutta methods continuously extended by polynomial interpolation, includes a brief review of the various approaches existing in the literature, and develops an exhaustive error and well-posedness analysis for the general classes of one-step and multistep methods. The book presents a comprehensive development of continuous extensions of Runge-Kutta methods which are of interest also in the numerical treatment of more general problems such as dense output, discontinuous equations, etc. Some deeper insight into convergence and superconvergence of continuous Runge-Kutta methods is carried out for DDEs with various kinds of delays. The stepsize control mechanism is also developed on a firm mathematical basis relying on the discrete and continuous local error estimates. Classical results and a unconventional analysis of "stability with respect to forcing term" is reviewed for ordinary differential equations in view of the subsequent numerical stability analysis. Moreover, an exhaustive description of stability domains for some test DDEs is carried out and the corresponding stability requirements for the numerical methods are assessed and investigated. Alternative approaches, based on suitable formulation of DDEs as partial differential equations and subsequent semidiscretization are briefly described and compared with the classical approach. A list of available codes is provided, and illustrative examples, pseudo-codes and numerical experiments are included throughout the book.
Publisher: OUP Oxford
ISBN: 0191523135
Category : Mathematics
Languages : en
Pages : 410
Book Description
The main purpose of the book is to introduce the readers to the numerical integration of the Cauchy problem for delay differential equations (DDEs). Peculiarities and differences that DDEs exhibit with respect to ordinary differential equations are preliminarily outlined by numerous examples illustrating some unexpected, and often surprising, behaviours of the analytical and numerical solutions. The effect of various kinds of delays on the regularity of the solution is described and some essential existence and uniqueness results are reported. The book is centered on the use of Runge-Kutta methods continuously extended by polynomial interpolation, includes a brief review of the various approaches existing in the literature, and develops an exhaustive error and well-posedness analysis for the general classes of one-step and multistep methods. The book presents a comprehensive development of continuous extensions of Runge-Kutta methods which are of interest also in the numerical treatment of more general problems such as dense output, discontinuous equations, etc. Some deeper insight into convergence and superconvergence of continuous Runge-Kutta methods is carried out for DDEs with various kinds of delays. The stepsize control mechanism is also developed on a firm mathematical basis relying on the discrete and continuous local error estimates. Classical results and a unconventional analysis of "stability with respect to forcing term" is reviewed for ordinary differential equations in view of the subsequent numerical stability analysis. Moreover, an exhaustive description of stability domains for some test DDEs is carried out and the corresponding stability requirements for the numerical methods are assessed and investigated. Alternative approaches, based on suitable formulation of DDEs as partial differential equations and subsequent semidiscretization are briefly described and compared with the classical approach. A list of available codes is provided, and illustrative examples, pseudo-codes and numerical experiments are included throughout the book.
An Introduction to Delay Differential Equations with Applications to the Life Sciences
Author: hal smith
Publisher: Springer Science & Business Media
ISBN: 1441976469
Category : Mathematics
Languages : en
Pages : 178
Book Description
This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.
Publisher: Springer Science & Business Media
ISBN: 1441976469
Category : Mathematics
Languages : en
Pages : 178
Book Description
This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1124
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1124
Book Description
SIAM Journal on Control and Optimization
Author: Society for Industrial and Applied Mathematics
Publisher:
ISBN:
Category : Control theory
Languages : en
Pages : 1200
Book Description
Publisher:
ISBN:
Category : Control theory
Languages : en
Pages : 1200
Book Description
Delay Differential Equations
Author: Balakumar Balachandran
Publisher: Springer Science & Business Media
ISBN: 0387855955
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
Delay Differential Equations: Recent Advances and New Directions cohesively presents contributions from leading experts on the theory and applications of functional and delay differential equations (DDEs). Students and researchers will benefit from a unique focus on theory, symbolic, and numerical methods, which illustrate how the concepts described can be applied to practical systems ranging from automotive engines to remote control over the Internet. Comprehensive coverage of recent advances, analytical contributions, computational techniques, and illustrative examples of the application of current results drawn from biology, physics, mechanics, and control theory. Students, engineers and researchers from various scientific fields will find Delay Differential Equations: Recent Advances and New Directions a valuable reference.
Publisher: Springer Science & Business Media
ISBN: 0387855955
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
Delay Differential Equations: Recent Advances and New Directions cohesively presents contributions from leading experts on the theory and applications of functional and delay differential equations (DDEs). Students and researchers will benefit from a unique focus on theory, symbolic, and numerical methods, which illustrate how the concepts described can be applied to practical systems ranging from automotive engines to remote control over the Internet. Comprehensive coverage of recent advances, analytical contributions, computational techniques, and illustrative examples of the application of current results drawn from biology, physics, mechanics, and control theory. Students, engineers and researchers from various scientific fields will find Delay Differential Equations: Recent Advances and New Directions a valuable reference.