Controlled Fabrication, Characterization and Properties of One-dimensional Semiconductor Nanostructures from and on Metal Substrates

Controlled Fabrication, Characterization and Properties of One-dimensional Semiconductor Nanostructures from and on Metal Substrates PDF Author: 錢桂香
Publisher:
ISBN:
Category : Low-dimensional semiconductors
Languages : en
Pages : 266

Get Book Here

Book Description

Controlled Fabrication, Characterization and Properties of One-dimensional Semiconductor Nanostructures from and on Metal Substrates

Controlled Fabrication, Characterization and Properties of One-dimensional Semiconductor Nanostructures from and on Metal Substrates PDF Author: 錢桂香
Publisher:
ISBN:
Category : Low-dimensional semiconductors
Languages : en
Pages : 266

Get Book Here

Book Description


Template Directed Fabrication and Characterization of 1D Nanostructures for Nanoelectronics

Template Directed Fabrication and Characterization of 1D Nanostructures for Nanoelectronics PDF Author: Muhammad Ibrahim Khan
Publisher:
ISBN:
Category : Nanoelectronics
Languages : en
Pages : 408

Get Book Here

Book Description


One-Dimensional Nanostructures

One-Dimensional Nanostructures PDF Author: Tianyou Zhai
Publisher: John Wiley & Sons
ISBN: 1118310365
Category : Technology & Engineering
Languages : en
Pages : 857

Get Book Here

Book Description
Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-dimensional nanostructures, including carbon nanotubes, semiconductor nanowires, organic molecule nanostructures, polymer nanofibers, peptide nanostructures, and supramolecular nanostructures. Moreover, the book offers unique insights into the future of one-dimensional nanostructures, with expert forecasts of new research breakthroughs and applications. One-Dimensional Nanostructures collects and analyzes a wealth of key research findings and applications, with detailed coverage of: Synthesis Properties Energy applications Photonics and optoelectronics applications Sensing, plasmonics, electronics, and biosciences applications Practical case studies demonstrate how the latest applications work. Tables throughout the book summarize key information, and diagrams enable readers to grasp complex concepts and designs. References at the end of each chapter serve as a gateway to the literature in the field. With its clear explanations of the underlying principles of one-dimensional nanostructures, this book is ideal for students, researchers, and academics in chemistry, physics, materials science, and engineering. Moreover, One-Dimensional Nanostructures will help readers advance their own investigations in order to develop the next generation of applications.

Semiconductor Nanostructures for Optoelectronic Devices

Semiconductor Nanostructures for Optoelectronic Devices PDF Author: Gyu-Chul Yi
Publisher: Springer Science & Business Media
ISBN: 3642224806
Category : Technology & Engineering
Languages : en
Pages : 347

Get Book Here

Book Description
This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.

Synthesis, Electrical and Optical Characterization of Semiconductor Nanowires

Synthesis, Electrical and Optical Characterization of Semiconductor Nanowires PDF Author: Xianwei Zhao
Publisher:
ISBN:
Category :
Languages : en
Pages : 141

Get Book Here

Book Description
Abstract: Over the past 15 years, nanowires (NWs) and nanotubes have drawn great attention since the application of VLS growth mechanism into the synthesis of one dimensional structures. Semiconductor nanowires exhibit novel electrical and optical properties. With a broad selection of composition and band structures, these one-dimensional semiconductor nanostructures are considered to be the critical components in a wide range of potential nanoscale device applications. To fully exploit these one-dimensional nanostructures, current research has focused on synthetic control of one-dimensional nanoscale building blocks, characterization of their novel properties, device fabrication based on nanowire building blocks, and integration of nanowire elements into complex functional architectures. Progress has been made in past two decades. However, there are still challenges in NWs growth controls, such as size, shape, position, stoichiometry and defects. Due to the dimensionality and possible quantum confinement effects of nanowires, there are also challenges in characterization and device fabrication. A systematic study of controlled growth of nanowires has been conducted in this dissertation. The first part of this dissertation presents various synthesis techniques of semiconductor nanowires via metal catalyzed vapor-liquid-solid (VLS) growth mechanism. Pulse laser deposition (PLD) with arsenic over pressure method has been successfully utilized for GaAs nanowires. Challenges such as uniformity issue commonly seen in MOCVD and MBE systems, morphology and stoichiometry issues commonly seen in conventional PLD systems have been overcome. Si nanowires fabrication via ultrahigh vacuum magnetron sputtering has reported for the first time, which also provides an alternate route for Si nanowires synthesis. The second part of this dissertation discusses optical properties of ensemble direct band gap nanowires. Photoluminescence spectra have been measured on an ensemble of random orientated InP nanowires. Polarization anisotropy has been explored on ensemble nanowires and oxide-coated nanowires. Our calculation for randomly oriented nanowires agrees well with experimental results. The control of polarization anisotropy of nanowires is realized by coating nanowires with an oxide layer composed of matching dielectric constant media. This opens a path to optical spin injection and detection on direct band gap nanowires.

Characterization of Semiconductor Heterostructures and Nanostructures

Characterization of Semiconductor Heterostructures and Nanostructures PDF Author: Giovanni Agostini
Publisher: Newnes
ISBN: 044459549X
Category : Technology & Engineering
Languages : en
Pages : 829

Get Book Here

Book Description
Characterization of Semiconductor Heterostructures and Nanostructures is structured so that each chapter is devoted to a specific characterization technique used in the understanding of the properties (structural, physical, chemical, electrical etc..) of semiconductor quantum wells and superlattices. An additional chapter is devoted to ab initio modeling. The book has two basic aims. The first is educational, providing the basic concepts of each of the selected techniques with an approach understandable by advanced students in Physics, Chemistry, Material Science, Engineering, Nanotechnology. The second aim is to provide a selected set of examples from the recent literature of the TOP results obtained with the specific technique in understanding the properties of semiconductor heterostructures and nanostructures. Each chapter has this double structure: the first part devoted to explain the basic concepts, and the second to the discussion of the most peculiar and innovative examples. The topic of quantum wells, wires and dots should be seen as a pretext of applying top level characterization techniques in understanding the structural, electronic etc properties of matter at the nanometer (and even sub-nanometer) scale. In this respect it is an essential reference in the much broader, and extremely hot, field of Nanotechnology. Comprehensive collection of the most powerful characterization techniques for semiconductors heterostructures and nanostructures Most of the chapters are authored by scientists that are world-wide among the top-ten in publication ranking of the specific field Each chapter starts with a didactic introduction on the technique The second part of each chapters deals with a selection of top examples highlighting the power of the specific technique to analyse the properties of semiconductors heterostructures and nanostructures

Fabrication and Assembly of One-Dimensional Semiconductor Nanostructures and Their Application to Multi-Functional Devices

Fabrication and Assembly of One-Dimensional Semiconductor Nanostructures and Their Application to Multi-Functional Devices PDF Author: Yaozhong Zhang
Publisher:
ISBN: 9780355511475
Category : Electronic dissertations
Languages : en
Pages : 235

Get Book Here

Book Description


Fabrication and Characterization in the Micro-Nano Range

Fabrication and Characterization in the Micro-Nano Range PDF Author: Fernando A. Lasagni
Publisher: Springer Science & Business Media
ISBN: 3642177824
Category : Technology & Engineering
Languages : en
Pages : 227

Get Book Here

Book Description
This book shows an update in the field of micro/nano fabrications techniques of two and three dimensional structures as well as ultimate three dimensional characterization methods from the atom range to the micro scale. Several examples are presented showing their direct application in different technological fields such as microfluidics, photonics, biotechnology and aerospace engineering, between others. The effects of the microstructure and topography on the macroscopic properties of the studied materials are discussed, together with a detailed review of 3D imaging techniques.

Polymer Science and Nanotechnology

Polymer Science and Nanotechnology PDF Author: Ravin Narain
Publisher: Elsevier
ISBN: 0128168072
Category : Technology & Engineering
Languages : en
Pages : 488

Get Book Here

Book Description
Polymer Science and Nanotechnology: Fundamentals and Applications brings together the latest advances in polymer science and nanoscience. Sections explain the fundamentals of polymer science, including key aspects and methods in terms of molecular structure, synthesis, characterization, microstructure, phase structure and processing and properties before discussing the materials of particular interest and utility for novel applications, such as hydrogels, natural polymers, smart polymers and polymeric biomaterials. The second part of the book examines essential techniques in nanotechnology, with an emphasis on the utilization of advanced polymeric materials in the context of nanoscience. Throughout the book, chapters are prepared so that materials and products can be geared towards specific applications. Two chapters cover, in detail, major application areas, including fuel and solar cells, tissue engineering, drug and gene delivery, membranes, water treatment and oil recovery. - Presents the latest applications of polymers and polymeric nanomaterials, across energy, biomedical, pharmaceutical, and environmental fields - Contains detailed coverage of polymer nanocomposites, polymer nanoparticles, and hybrid polymer-metallic nanoparticles - Supports an interdisciplinary approach, enabling readers from different disciplines to understand polymer science and nanotechnology and the interface between them

Nanofabrication and its Application in Renewable Energy

Nanofabrication and its Application in Renewable Energy PDF Author: Gang Zhang
Publisher: Royal Society of Chemistry
ISBN: 1782621318
Category : Technology & Engineering
Languages : en
Pages : 240

Get Book Here

Book Description
Nanoscale materials and structures have attracted great attention in recent years because of their unique physical and chemical properties and potential use in energy transport and conversion. This book puts the subject into context by first looking at current synthesis methods for nanomaterials, from the bottom-up and top-down methods, followed by enhanced energy conversion efficiency at the nanoscale and then specific applications e.g. photovoltaic cells and nanogenerators. This authoritative and comprehensive book will be of interest to both the existing scientific community in this field, as well as for new people who wish to enter it.