Continuous Tensor Products and Arveson's Spectral $C^*$-Algebras

Continuous Tensor Products and Arveson's Spectral $C^*$-Algebras PDF Author: Joachim Zacharias
Publisher: American Mathematical Soc.
ISBN: 0821815458
Category : Mathematics
Languages : en
Pages : 135

Get Book Here

Book Description
This book is intended for graduate students and research mathematicians interested in operator algebras

Continuous Tensor Products and Arveson's Spectral $C^*$-Algebras

Continuous Tensor Products and Arveson's Spectral $C^*$-Algebras PDF Author: Joachim Zacharias
Publisher: American Mathematical Soc.
ISBN: 0821815458
Category : Mathematics
Languages : en
Pages : 135

Get Book Here

Book Description
This book is intended for graduate students and research mathematicians interested in operator algebras

Noncommutative Dynamics and E-Semigroups

Noncommutative Dynamics and E-Semigroups PDF Author: William Arveson
Publisher: Springer Science & Business Media
ISBN: 0387215247
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description
This book introduces the notion of an E-semigroup, a generalization of the known concept of E_O-semigroup. These objects are families of endomorphisms of a von Neumann algebra satisfying certain natural algebraic and continuity conditions. Its thorough approach is ideal for graduate students and research mathematicians.

Advances in Quantum Dynamics

Advances in Quantum Dynamics PDF Author: Geoffrey L. Price
Publisher: American Mathematical Soc.
ISBN: 0821832158
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
This volume contains the proceedings of the conference on Advances in Quantum Dynamics. The purpose of the conference was to assess the current state of knowledge and to outline future research directions of quantum dynamical semigroups on von Neumann algebras. Since the appearance of the landmark papers by F. Murray and J. von Neumann, On the Rings of Operators, von Neumann algebras have been used as a mathematical model in the study of time evolution of quantum mechanical systems.Following the work of M. H. Stone, von Neumann, and others on the structure of one-parameter groups of unitary transformations, many researchers have made fundamental contributions to the understanding of time-reversible dynamical systems. This book deals with the mathematics of time-irreversiblesystems, also called dissipative systems. The time parameter is the half-line, and the transformations are now endomorphisms as opposed to automorphisms. For over a decade, W. B. Arveson and R. T. Powers have pioneered the effort to understand the structure of irreversible quantum dynamical systems on von Neumann algebras. Their papers in this volume serve as an excellent introduction to the theory. Also included are contributions in other areas which have had an impact on the theory, such asBrownian motion, dilation theory, quantum probability, and free probability. The volume is suitable for graduate students and research mathematicians interested in the dynamics of quantum systems and corresponding topics in the theory of operator algebras.

Splitting Theorems for Certain Equivariant Spectra

Splitting Theorems for Certain Equivariant Spectra PDF Author: L. Gaunce Lewis
Publisher: American Mathematical Soc.
ISBN: 082182046X
Category : Mathematics
Languages : en
Pages : 106

Get Book Here

Book Description
This book is intended for graduate students and research mathematicians interested in algebraic topology.

The Spectrum of a Module Category

The Spectrum of a Module Category PDF Author: Henning Krause
Publisher: American Mathematical Soc.
ISBN: 0821826182
Category : Mathematics
Languages : en
Pages : 143

Get Book Here

Book Description
These notes present an introduction into the spectrum of the category of modules over a ring. We discuss the general theory of pure-injective modules and concentrate on the isomorphism classes of indecomposable pure-injective modules which form the underlying set of this spectrum. The interplay between the spectrum and the category of finitely presented modules provides new insight into the geometrical and homological properties of the category of finitely presented modules. Various applications from representation theory of finite dimensional algebras are included.

Equivariant $E$-Theory for $C^*$-Algebras

Equivariant $E$-Theory for $C^*$-Algebras PDF Author: Erik Guentner
Publisher: American Mathematical Soc.
ISBN: 0821821164
Category : Mathematics
Languages : en
Pages : 101

Get Book Here

Book Description
This title examines the equivariant e-theory for c*-algebra, focusing on research carried out by Higson and Kasparov. Let A and B be C*-algebras which are equipped with continuous actions of a second countable, locally compact group G. We define a notion of equivariant asymptotic morphism, and use it to define equivariant E-theory groups EULG(A, B) which generalize the E-theory groups of Connes and Higson. We develop the basic properties of equivariant E-theory, including a composition product and six-term exact sequences in both variables, and apply our theory to the problem of calculating K-theory for group C*-algebras. Our main theorem gives a simple criterion for the assembly map of Baum and Connes to be an isomorphism. The result plays an important role in the work of Higson and Kasparov on the Bau m-Connes conjecture for groups which act isometrically and metrically properly on Hilbert space

On Natural Coalgebra Decompositions of Tensor Algebras and Loop Suspensions

On Natural Coalgebra Decompositions of Tensor Algebras and Loop Suspensions PDF Author: Paul Selick
Publisher: American Mathematical Soc.
ISBN: 0821821105
Category : Mathematics
Languages : en
Pages : 122

Get Book Here

Book Description
This book is intended for graduate students and research mathematicians interested in topology and representation theory.

Non-Additive Exact Functors and Tensor Induction for Mackey Functors

Non-Additive Exact Functors and Tensor Induction for Mackey Functors PDF Author: Serge Bouc
Publisher: American Mathematical Soc.
ISBN: 0821819518
Category : Mathematics
Languages : en
Pages : 89

Get Book Here

Book Description
First the author introduces a generalization of the notion of (right)-exact functor between abelian categories to the case of non-additive functors. The main result of this section is an extension theorem: any functor defined on a suitable subcategory can be extended uniquely to a right exact functor defined on the whole category. Next those results are used to define various functors of generalized tensor induction, associated to finite bisets, between categories attached to finite groups. This includes a definition of tensor induction for Mackey functors, for cohomological Mackey functors, for p-permutation modules and algebras. This also gives a single formalism of bisets for restriction, inflation, and ordinary tensor induction for modules.

Homogeneous Integral Table Algebras of Degree Three: A Trilogy

Homogeneous Integral Table Algebras of Degree Three: A Trilogy PDF Author: Harvey I. Blau
Publisher: American Mathematical Soc.
ISBN: 0821820214
Category : Mathematics
Languages : en
Pages : 109

Get Book Here

Book Description
Homogeneous integral table algebras of degree three with a faithful real element. The algebras of the title are classified to exact isomorphism; that is, the sets of structure constants which arise from the given basis are completely determined. Other results describe all possible extensions (pre-images), with a faithful element which is not necessarily real, of certain simple homogeneous integral table algebras of degree three. On antisymmetric homogeneous integral table algebras of degree three. This paper determines the homogeneous integral table algebras of degree three in which the given basis has a faithful element and has no nontrivial elements that are either real (symmetric) or linear, and where an additional hypothesis is satisfied. It is shown that all such bases must occur as the set of orbit sums in the complex group algebra of a finite abelian group under the action of a fixed-point-free automorphism oforder three. Homogeneous integral table algebras of degree three with no nontrivial linear elements. The algebras of the title which also have a faithful element are determined to exact isomorphism. All of the simple homogeneous integral table algebras of degree three are displayed, and the commutative association schemes in which all the nondiagonal relations have valency three and where some relation defines a connected graph on the underlying set are classified up to algebraic isomorphism.

Multi-Interval Linear Ordinary Boundary Value Problems and Complex Symplectic Algebra

Multi-Interval Linear Ordinary Boundary Value Problems and Complex Symplectic Algebra PDF Author: William Norrie Everitt
Publisher: American Mathematical Soc.
ISBN: 0821826697
Category : Mathematics
Languages : en
Pages : 79

Get Book Here

Book Description
A multi-interval quasi-differential system $\{I_{r},M_{r},w_{r}:r\in\Omega\}$ consists of a collection of real intervals, $\{I_{r}\}$, as indexed by a finite, or possibly infinite index set $\Omega$ (where $\mathrm{card} (\Omega)\geq\aleph_{0}$ is permissible), on which are assigned ordinary or quasi-differential expressions $M_{r}$ generating unbounded operators in the Hilbert function spaces $L_{r}^{2}\equiv L^{2}(I_{r};w_{r})$, where $w_{r}$ are given, non-negative weight functions. For each fixed $r\in\Omega$ assume that $M_{r}$ is Lagrange symmetric (formally self-adjoint) on $I_{r}$ and hence specifies minimal and maximal closed operators $T_{0,r}$ and $T_{1,r}$, respectively, in $L_{r}^{2}$. However the theory does not require that the corresponding deficiency indices $d_{r}^{-}$ and $d_{r}^{+}$ of $T_{0,r}$ are equal (e. g. the symplectic excess $Ex_{r}=d_{r}^{+}-d_{r}^{-}\neq 0$), in which case there will not exist any self-adjoint extensions of $T_{0,r}$ in $L_{r}^{2}$. In this paper a system Hilbert space $\mathbf{H}:=\sum_{r\,\in\,\Omega}\oplus L_{r}^{2}$ is defined (even for non-countable $\Omega$) with corresponding minimal and maximal system operators $\mathbf{T}_{0}$ and $\mathbf{T}_{1}$ in $\mathbf{H}$. Then the system deficiency indices $\mathbf{d}^{\pm} =\sum_{r\,\in\,\Omega}d_{r}^{\pm}$ are equal (system symplectic excess $Ex=0$), if and only if there exist self-adjoint extensions $\mathbf{T}$ of $\mathbf{T}_{0}$ in $\mathbf{H}$. The existence is shown of a natural bijective correspondence between the set of all such self-adjoint extensions $\mathbf{T}$ of $\mathbf{T}_{0}$, and the set of all complete Lagrangian subspaces $\mathsf{L}$ of the system boundary complex symplectic space $\mathsf{S}=\mathbf{D(T}_{1})/\mathbf{D(T}_{0})$. This result generalizes the earlier symplectic version of the celebrated GKN-Theorem for single interval systems to multi-interval systems. Examples of such complete Lagrangians, for both finite and infinite dimensional complex symplectic $\mathsf{S}$, illuminate new phenoma for the boundary value problems of multi-interval systems. These concepts have applications to many-particle systems of quantum mechanics, and to other physical problems.