Author: Dennis Stanton
Publisher: Springer Science & Business Media
ISBN: 1461249686
Category : Mathematics
Languages : en
Pages : 194
Book Description
The notes that eventually became this book were written between 1977 and 1985 for the course called Constructive Combinatorics at the University of Minnesota. This is a one-quarter (10 week) course for upper level undergraduate students. The class usually consists of mathematics and computer science majors, with an occasional engineering student. Several graduate students in computer science also attend. At Minnesota, Constructive Combinatorics is the third quarter of a three quarter sequence. The fIrst quarter, Enumerative Combinatorics, is at the level of the texts by Bogart [Bo], Brualdi [Br], Liu [Li] or Tucker [Tu] and is a prerequisite for this course. The second quarter, Graph Theory and Optimization, is not a prerequisite. We assume that the students are familiar with the techniques of enumeration: basic counting principles, generating functions and inclusion/exclusion. This course evolved from a course on combinatorial algorithms. That course contained a mixture of graph algorithms, optimization and listing algorithms. The computer assignments generally consisted of testing algorithms on examples. While we felt that such material was useful and not without mathematical content, we did not think that the course had a coherent mathematical focus. Furthermore, much of it was being taught, or could have been taught, elsewhere. Graph algorithms and optimization, for instance, were inserted into the graph theory course where they naturally belonged. The computer science department already taught some of the material: the simpler algorithms in a discrete mathematics course; effIciency of algorithms in a more advanced course.
Constructive Combinatorics
Author: Dennis Stanton
Publisher: Springer
ISBN: 0387963472
Category : Mathematics
Languages : en
Pages : 186
Book Description
The notes that eventually became this book were written between 1977 and 1985 for the course called Constructive Combinatorics at the University of Minnesota. This is a one-quarter (10 week) course for upper level undergraduate students. The class usually consists of mathematics and computer science majors, with an occasional engineering student. Several graduate students in computer science also attend. At Minnesota, Constructive Combinatorics is the third quarter of a three quarter sequence. The fIrst quarter, Enumerative Combinatorics, is at the level of the texts by Bogart [Bo], Brualdi [Br], Liu [Li] or Tucker [Tu] and is a prerequisite for this course. The second quarter, Graph Theory and Optimization, is not a prerequisite. We assume that the students are familiar with the techniques of enumeration: basic counting principles, generating functions and inclusion/exclusion. This course evolved from a course on combinatorial algorithms. That course contained a mixture of graph algorithms, optimization and listing algorithms. The computer assignments generally consisted of testing algorithms on examples. While we felt that such material was useful and not without mathematical content, we did not think that the course had a coherent mathematical focus. Furthermore, much of it was being taught, or could have been taught, elsewhere. Graph algorithms and optimization, for instance, were inserted into the graph theory course where they naturally belonged. The computer science department already taught some of the material: the simpler algorithms in a discrete mathematics course; effIciency of algorithms in a more advanced course.
Publisher: Springer
ISBN: 0387963472
Category : Mathematics
Languages : en
Pages : 186
Book Description
The notes that eventually became this book were written between 1977 and 1985 for the course called Constructive Combinatorics at the University of Minnesota. This is a one-quarter (10 week) course for upper level undergraduate students. The class usually consists of mathematics and computer science majors, with an occasional engineering student. Several graduate students in computer science also attend. At Minnesota, Constructive Combinatorics is the third quarter of a three quarter sequence. The fIrst quarter, Enumerative Combinatorics, is at the level of the texts by Bogart [Bo], Brualdi [Br], Liu [Li] or Tucker [Tu] and is a prerequisite for this course. The second quarter, Graph Theory and Optimization, is not a prerequisite. We assume that the students are familiar with the techniques of enumeration: basic counting principles, generating functions and inclusion/exclusion. This course evolved from a course on combinatorial algorithms. That course contained a mixture of graph algorithms, optimization and listing algorithms. The computer assignments generally consisted of testing algorithms on examples. While we felt that such material was useful and not without mathematical content, we did not think that the course had a coherent mathematical focus. Furthermore, much of it was being taught, or could have been taught, elsewhere. Graph algorithms and optimization, for instance, were inserted into the graph theory course where they naturally belonged. The computer science department already taught some of the material: the simpler algorithms in a discrete mathematics course; effIciency of algorithms in a more advanced course.
Combinatorics: The Art of Counting
Author: Bruce E. Sagan
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 328
Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 328
Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
ICIAM 91
Author: Robert E. O'Malley
Publisher: SIAM
ISBN: 9780898713022
Category : Mathematics
Languages : en
Pages : 424
Book Description
Proceedings -- Computer Arithmetic, Algebra, OOP.
Publisher: SIAM
ISBN: 9780898713022
Category : Mathematics
Languages : en
Pages : 424
Book Description
Proceedings -- Computer Arithmetic, Algebra, OOP.
Notes on Introductory Combinatorics
Author: George Polya
Publisher: Springer Science & Business Media
ISBN: 1475711018
Category : Science
Languages : en
Pages : 202
Book Description
In the winter of 1978, Professor George P61ya and I jointly taught Stanford University's introductory combinatorics course. This was a great opportunity for me, as I had known of Professor P61ya since having read his classic book, How to Solve It, as a teenager. Working with P6lya, who ·was over ninety years old at the time, was every bit as rewarding as I had hoped it would be. His creativity, intelligence, warmth and generosity of spirit, and wonderful gift for teaching continue to be an inspiration to me. Combinatorics is one of the branches of mathematics that play a crucial role in computer sCience, since digital computers manipulate discrete, finite objects. Combinatorics impinges on computing in two ways. First, the properties of graphs and other combinatorial objects lead directly to algorithms for solving graph-theoretic problems, which have widespread application in non-numerical as well as in numerical computing. Second, combinatorial methods provide many analytical tools that can be used for determining the worst-case and expected performance of computer algorithms. A knowledge of combinatorics will serve the computer scientist well. Combinatorics can be classified into three types: enumerative, eXistential, and constructive. Enumerative combinatorics deals with the counting of combinatorial objects. Existential combinatorics studies the existence or nonexistence of combinatorial configurations.
Publisher: Springer Science & Business Media
ISBN: 1475711018
Category : Science
Languages : en
Pages : 202
Book Description
In the winter of 1978, Professor George P61ya and I jointly taught Stanford University's introductory combinatorics course. This was a great opportunity for me, as I had known of Professor P61ya since having read his classic book, How to Solve It, as a teenager. Working with P6lya, who ·was over ninety years old at the time, was every bit as rewarding as I had hoped it would be. His creativity, intelligence, warmth and generosity of spirit, and wonderful gift for teaching continue to be an inspiration to me. Combinatorics is one of the branches of mathematics that play a crucial role in computer sCience, since digital computers manipulate discrete, finite objects. Combinatorics impinges on computing in two ways. First, the properties of graphs and other combinatorial objects lead directly to algorithms for solving graph-theoretic problems, which have widespread application in non-numerical as well as in numerical computing. Second, combinatorial methods provide many analytical tools that can be used for determining the worst-case and expected performance of computer algorithms. A knowledge of combinatorics will serve the computer scientist well. Combinatorics can be classified into three types: enumerative, eXistential, and constructive. Enumerative combinatorics deals with the counting of combinatorial objects. Existential combinatorics studies the existence or nonexistence of combinatorial configurations.
Combinatorial techniques
Author: Sharad S. Sane
Publisher: Springer
ISBN: 938627955X
Category : Mathematics
Languages : en
Pages : 477
Book Description
This is a basic text on combinatorics that deals with all the three aspects of the discipline: tricks, techniques and theory, and attempts to blend them. The book has several distinctive features. Probability and random variables with their interconnections to permutations are discussed. The theme of parity has been specially included and it covers applications ranging from solving the Nim game to the quadratic reciprocity law. Chapters related to geometry include triangulations and Sperner's theorem, classification of regular polytopes, tilings and an introduction to the Eulcidean Ramsey theory. Material on group actions covers Sylow theory, automorphism groups and a classification of finite subgroups of orthogonal groups. All chapters have a large number of exercises with varying degrees of difficulty, ranging from material suitable for Mathematical Olympiads to research.
Publisher: Springer
ISBN: 938627955X
Category : Mathematics
Languages : en
Pages : 477
Book Description
This is a basic text on combinatorics that deals with all the three aspects of the discipline: tricks, techniques and theory, and attempts to blend them. The book has several distinctive features. Probability and random variables with their interconnections to permutations are discussed. The theme of parity has been specially included and it covers applications ranging from solving the Nim game to the quadratic reciprocity law. Chapters related to geometry include triangulations and Sperner's theorem, classification of regular polytopes, tilings and an introduction to the Eulcidean Ramsey theory. Material on group actions covers Sylow theory, automorphism groups and a classification of finite subgroups of orthogonal groups. All chapters have a large number of exercises with varying degrees of difficulty, ranging from material suitable for Mathematical Olympiads to research.
Ideals, Varieties, and Algorithms
Author: David A Cox
Publisher: Springer Science & Business Media
ISBN: 0387356509
Category : Mathematics
Languages : en
Pages : 565
Book Description
This book details the heart and soul of modern commutative and algebraic geometry. It covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. In addition to enhancing the text of the second edition, with over 200 pages reflecting changes to enhance clarity and correctness, this third edition of Ideals, Varieties and Algorithms includes: a significantly updated section on Maple; updated information on AXIOM, CoCoA, Macaulay 2, Magma, Mathematica and SINGULAR; and presents a shorter proof of the Extension Theorem.
Publisher: Springer Science & Business Media
ISBN: 0387356509
Category : Mathematics
Languages : en
Pages : 565
Book Description
This book details the heart and soul of modern commutative and algebraic geometry. It covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. In addition to enhancing the text of the second edition, with over 200 pages reflecting changes to enhance clarity and correctness, this third edition of Ideals, Varieties and Algorithms includes: a significantly updated section on Maple; updated information on AXIOM, CoCoA, Macaulay 2, Magma, Mathematica and SINGULAR; and presents a shorter proof of the Extension Theorem.
Introductory Combinatorics
Author: Kenneth P. Bogart
Publisher: Harcourt Brace College Publishers
ISBN:
Category : Computers
Languages : en
Pages : 648
Book Description
Introductory, Combinatorics, Third Edition is designed for introductory courses in combinatorics, or more generally, discrete mathematics. The author, Kenneth Bogart, has chosen core material of value to students in a wide variety of disciplines: mathematics, computer science, statistics, operations research, physical sciences, and behavioral sciences. The rapid growth in the breadth and depth of the field of combinatorics in the last several decades, first in graph theory and designs and more recently in enumeration and ordered sets, has led to a recognition of combinatorics as a field with which the aspiring mathematician should become familiar. This long-overdue new edition of a popular set presents a broad comprehensive survey of modern combinatorics which is important to the various scientific fields of study.
Publisher: Harcourt Brace College Publishers
ISBN:
Category : Computers
Languages : en
Pages : 648
Book Description
Introductory, Combinatorics, Third Edition is designed for introductory courses in combinatorics, or more generally, discrete mathematics. The author, Kenneth Bogart, has chosen core material of value to students in a wide variety of disciplines: mathematics, computer science, statistics, operations research, physical sciences, and behavioral sciences. The rapid growth in the breadth and depth of the field of combinatorics in the last several decades, first in graph theory and designs and more recently in enumeration and ordered sets, has led to a recognition of combinatorics as a field with which the aspiring mathematician should become familiar. This long-overdue new edition of a popular set presents a broad comprehensive survey of modern combinatorics which is important to the various scientific fields of study.
Combinatorics
Author: Peter Jephson Cameron
Publisher: Cambridge University Press
ISBN: 9780521457613
Category : Mathematics
Languages : en
Pages : 372
Book Description
Combinatorics is a subject of increasing importance because of its links with computer science, statistics, and algebra. This textbook stresses common techniques (such as generating functions and recursive construction) that underlie the great variety of subject matter, and the fact that a constructive or algorithmic proof is more valuable than an existence proof. The author emphasizes techniques as well as topics and includes many algorithms described in simple terms. The text should provide essential background for students in all parts of discrete mathematics.
Publisher: Cambridge University Press
ISBN: 9780521457613
Category : Mathematics
Languages : en
Pages : 372
Book Description
Combinatorics is a subject of increasing importance because of its links with computer science, statistics, and algebra. This textbook stresses common techniques (such as generating functions and recursive construction) that underlie the great variety of subject matter, and the fact that a constructive or algorithmic proof is more valuable than an existence proof. The author emphasizes techniques as well as topics and includes many algorithms described in simple terms. The text should provide essential background for students in all parts of discrete mathematics.
FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science
Author: R. Ramanujam
Publisher: Springer Science & Business Media
ISBN: 3540304959
Category : Computers
Languages : en
Pages : 580
Book Description
This book constitutes the refereed proceedings of the 25th International Conference on the Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2005, held in Hyderabad, India, in December 2005. The 38 revised full papers presented together with 7 invited papers were carefully reviewed and selected from 167 submissions. A broad variety of current topics from the theory of computing are addressed, ranging from software science, programming theory, systems design and analysis, formal methods, mathematical logic, mathematical foundations, discrete mathematics, combinatorial mathematics, complexity theory, and automata theory to theoretical computer science in general.
Publisher: Springer Science & Business Media
ISBN: 3540304959
Category : Computers
Languages : en
Pages : 580
Book Description
This book constitutes the refereed proceedings of the 25th International Conference on the Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2005, held in Hyderabad, India, in December 2005. The 38 revised full papers presented together with 7 invited papers were carefully reviewed and selected from 167 submissions. A broad variety of current topics from the theory of computing are addressed, ranging from software science, programming theory, systems design and analysis, formal methods, mathematical logic, mathematical foundations, discrete mathematics, combinatorial mathematics, complexity theory, and automata theory to theoretical computer science in general.
Sperner Theory
Author: Konrad Engel
Publisher: Cambridge University Press
ISBN: 0521452066
Category : Mathematics
Languages : en
Pages : 430
Book Description
The starting point of this book is Sperner's theorem, which answers the question: What is the maximum possible size of a family of pairwise (with respect to inclusion) subsets of a finite set? This theorem stimulated the development of a fast growing theory dealing with external problems on finite sets and, more generally, on finite partially ordered sets. This book presents Sperner theory from a unified point of view, bringing combinatorial techniques together with methods from programming, linear algebra, Lie-algebra representations and eigenvalue methods, probability theory, and enumerative combinatorics. Researchers and graduate students in discrete mathematics, optimisation, algebra, probability theory, number theory, and geometry will find many powerful new methods arising from Sperner theory.
Publisher: Cambridge University Press
ISBN: 0521452066
Category : Mathematics
Languages : en
Pages : 430
Book Description
The starting point of this book is Sperner's theorem, which answers the question: What is the maximum possible size of a family of pairwise (with respect to inclusion) subsets of a finite set? This theorem stimulated the development of a fast growing theory dealing with external problems on finite sets and, more generally, on finite partially ordered sets. This book presents Sperner theory from a unified point of view, bringing combinatorial techniques together with methods from programming, linear algebra, Lie-algebra representations and eigenvalue methods, probability theory, and enumerative combinatorics. Researchers and graduate students in discrete mathematics, optimisation, algebra, probability theory, number theory, and geometry will find many powerful new methods arising from Sperner theory.