Author: Werner Greub
Publisher: Academic Press
ISBN: 0080879276
Category : Mathematics
Languages : en
Pages : 617
Book Description
Connections, Curvature, and Cohomology Volume 3
Connections, Curvature, and Cohomology Volume 3
Author: Werner Greub
Publisher: Academic Press
ISBN: 0080879276
Category : Mathematics
Languages : en
Pages : 617
Book Description
Connections, Curvature, and Cohomology Volume 3
Publisher: Academic Press
ISBN: 0080879276
Category : Mathematics
Languages : en
Pages : 617
Book Description
Connections, Curvature, and Cohomology Volume 3
Connections, Curvature, and Cohomology V1
Author:
Publisher: Academic Press
ISBN: 008087360X
Category : Mathematics
Languages : en
Pages : 467
Book Description
Connections, Curvature, and Cohomology V1
Publisher: Academic Press
ISBN: 008087360X
Category : Mathematics
Languages : en
Pages : 467
Book Description
Connections, Curvature, and Cohomology V1
Differential Geometry
Author: Loring W. Tu
Publisher: Springer
ISBN: 3319550845
Category : Mathematics
Languages : en
Pages : 358
Book Description
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Publisher: Springer
ISBN: 3319550845
Category : Mathematics
Languages : en
Pages : 358
Book Description
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Connections, Curvature, and Cohomology: Lie groups, principal bundles, and characteristic classes
Author: Werner Hildbert Greub
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 572
Book Description
Volume 2.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 572
Book Description
Volume 2.
From Calculus to Cohomology
Author: Ib H. Madsen
Publisher: Cambridge University Press
ISBN: 9780521589567
Category : Mathematics
Languages : en
Pages : 302
Book Description
An introductory textbook on cohomology and curvature with emphasis on applications.
Publisher: Cambridge University Press
ISBN: 9780521589567
Category : Mathematics
Languages : en
Pages : 302
Book Description
An introductory textbook on cohomology and curvature with emphasis on applications.
Curvature and Characteristic Classes
Author: J.L. Dupont
Publisher: Springer
ISBN: 3540359141
Category : Mathematics
Languages : en
Pages : 185
Book Description
Publisher: Springer
ISBN: 3540359141
Category : Mathematics
Languages : en
Pages : 185
Book Description
Foliations and the Geometry of 3-Manifolds
Author: Danny Calegari
Publisher: Oxford University Press on Demand
ISBN: 0198570082
Category : Mathematics
Languages : en
Pages : 378
Book Description
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Publisher: Oxford University Press on Demand
ISBN: 0198570082
Category : Mathematics
Languages : en
Pages : 378
Book Description
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Characteristic Classes
Author: John Willard Milnor
Publisher: Princeton University Press
ISBN: 9780691081229
Category : Mathematics
Languages : en
Pages : 342
Book Description
The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.
Publisher: Princeton University Press
ISBN: 9780691081229
Category : Mathematics
Languages : en
Pages : 342
Book Description
The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.
Complex Geometry
Author: Daniel Huybrechts
Publisher: Springer Science & Business Media
ISBN: 9783540212904
Category : Computers
Languages : en
Pages : 336
Book Description
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Publisher: Springer Science & Business Media
ISBN: 9783540212904
Category : Computers
Languages : en
Pages : 336
Book Description
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Collected Papers
Author: Armand Borel
Publisher: Springer Science & Business Media
ISBN: 9783540676409
Category : Mathematics
Languages : en
Pages : 750
Book Description
This book collects the papers published by A. Borel from 1983 to 1999. About half of them are research papers, written on his own or in collaboration, on various topics pertaining mainly to algebraic or Lie groups, homogeneous spaces, arithmetic groups (L2-spectrum, automorphic forms, cohomology and covolumes), L2-cohomology of symmetric or locally symmetric spaces, and to the Oppenheim conjecture. Other publications include surveys and personal recollections (of D. Montgomery, Harish-Chandra, and A. Weil), considerations on mathematics in general and several articles of a historical nature: on the School of Mathematics at the Institute for Advanced Study, on N. Bourbaki and on selected aspects of the works of H. Weyl, C. Chevalley, E. Kolchin, J. Leray, and A. Weil. The book concludes with an essay on H. Poincaré and special relativity. Some comments on, and corrections to, a number of papers have also been added.
Publisher: Springer Science & Business Media
ISBN: 9783540676409
Category : Mathematics
Languages : en
Pages : 750
Book Description
This book collects the papers published by A. Borel from 1983 to 1999. About half of them are research papers, written on his own or in collaboration, on various topics pertaining mainly to algebraic or Lie groups, homogeneous spaces, arithmetic groups (L2-spectrum, automorphic forms, cohomology and covolumes), L2-cohomology of symmetric or locally symmetric spaces, and to the Oppenheim conjecture. Other publications include surveys and personal recollections (of D. Montgomery, Harish-Chandra, and A. Weil), considerations on mathematics in general and several articles of a historical nature: on the School of Mathematics at the Institute for Advanced Study, on N. Bourbaki and on selected aspects of the works of H. Weyl, C. Chevalley, E. Kolchin, J. Leray, and A. Weil. The book concludes with an essay on H. Poincaré and special relativity. Some comments on, and corrections to, a number of papers have also been added.