Conference on Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications

Conference on Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications PDF Author:
Publisher:
ISBN:
Category : Light
Languages : en
Pages : 320

Get Book Here

Book Description

Conference on Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications

Conference on Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications PDF Author:
Publisher:
ISBN:
Category : Light
Languages : en
Pages : 320

Get Book Here

Book Description


Conference on Light Scattering by Nonspherical Particles

Conference on Light Scattering by Nonspherical Particles PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 320

Get Book Here

Book Description


Light Scattering by Nonspherical Particles

Light Scattering by Nonspherical Particles PDF Author: Michael I. Mishchenko
Publisher: Elsevier
ISBN: 0080510205
Category : Science
Languages : en
Pages : 721

Get Book Here

Book Description
There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid particles encountered in natural and laboratory conditions have nonspherical shapes. Examples are soot and mineral aerosols, cirrus cloud particles, snow and frost crystals, ocean hydrosols, interplanetary and cometary dust grains, and microorganisms. It is now well known that scattering properties of nonspherical particles can differ dramatically from those of "equivalent" (e.g., equal-volume or equal-surface-area) spheres. Therefore, the ability to accurately compute or measure light scattering by nonspherical particles in order to clearly understand the effects of particle nonsphericity on light scattering is very important. The rapid improvement of computers and experimental techniques over the past 20 years and the development of efficient numerical approaches have resulted in major advances in this field which have not been systematically summarized. Because of the universal importance of electromagnetic scattering by nonspherical particles, papers on different aspects of this subject are scattered over dozens of diverse research and engineering journals. Often experts in one discipline (e.g., biology) are unaware of potentially useful results obtained in another discipline (e.g., antennas and propagation). This leads to an inefficient use of the accumulated knowledge and unnecessary redundancy in research activities. This book offers the first systematic and unified discussion of light scattering by nonspherical particles and its practical applications and represents the state-of-the-art of this important research field. Individual chapters are written by leading experts in respective areas and cover three major disciplines: theoretical and numerical techniques, laboratory measurements, and practical applications. An overview chapter provides a concise general introduction to the subject of nonspherical scattering and should be especially useful to beginners and those interested in fast practical applications. The audience for this book will include graduate students, scientists, and engineers working on specific aspects of electromagnetic scattering by small particles and its applications in remote sensing, geophysics, astrophysics, biomedical optics, and optical engineering. The first systematic and comprehensive treatment of electromagnetic scattering by nonspherical particles and its applications Individual chapters are written by leading experts in respective areas Includes a survey of all the relevant literature scattered over dozens of basic and applied research journals Consistent use of unified definitions and notation makes the book a coherent volume An overview chapter provides a concise general introduction to the subject of light scattering by nonspherical particles Theoretical chapters describe specific easy-to-use computer codes publicly available on the World Wide Web Extensively illustrated with over 200 figures, 4 in color

Light Scattering by Nonspherical Particles

Light Scattering by Nonspherical Particles PDF Author: Michael I Mishchenko
Publisher: Academic Press
ISBN: 9781493301621
Category :
Languages : en
Pages : 690

Get Book Here

Book Description
There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid particles encountered in natural and laboratory conditions have nonspherical shapes. Examples are soot and mineral aerosols, cirrus cloud particles, snow and frost crystals, ocean hydrosols, interplanetary and cometary dust grains, and microorganisms. It is now well known that scattering properties of nonspherical particles can differ dramatically from those of "equivalent" (e.g., equal-volume or equal-surface-area) spheres. Therefore, the ability to accurately compute or measure light scattering by nonspherical particles in order to clearly understand the effects of particle nonsphericity on light scattering is very important. The rapid improvement of computers and experimental techniques over the past 20 years and the development of efficient numerical approaches have resulted in major advances in this field which have not been systematically summarized. Because of the universal importance of electromagnetic scattering by nonspherical particles, papers on different aspects of this subject are scattered over dozens of diverse research and engineering journals. Often experts in one discipline (e.g., biology) are unaware of potentially useful results obtained in another discipline (e.g., antennas and propagation). This leads to an inefficient use of the accumulated knowledge and unnecessary redundancy in research activities. This book offers the first systematic and unified discussion of light scattering by nonspherical particles and its practical applications and represents the state-of-the-art of this important research field. Individual chapters are written by leading experts in respective areas and cover three major disciplines: theoretical and numerical techniques, laboratory measurements, and practical applications. An overview chapter provides a concise general introduction to the subject of nonspherical scattering and should be especially useful to beginners and those interested in fast practical applications. The audience for this book will include graduate students, scientists, and engineers working on specific aspects of electromagnetic scattering by small particles and its applications in remote sensing, geophysics, astrophysics, biomedical optics, and optical engineering. * The first systematic and comprehensive treatment of electromagnetic scattering by nonspherical particles and its applications * Individual chapters are written by leading experts in respective areas * Includes a survey of all the relevant literature scattered over dozens of basic and applied research journals * Consistent use of unified definitions and notation makes the book a coherent volume * An overview chapter provides a concise general introduction to the subject of light scattering by nonspherical particles * Theoretical chapters describe specific easy-to-use computer codes publicly available on the World Wide Web * Extensively illustrated with over 200 figures, 4 in color

Light scattering by nonspherical particles '98 : [conference held from 29 September to 1 October 1998 at the Goddard Institute for Space Studies in New York City]

Light scattering by nonspherical particles '98 : [conference held from 29 September to 1 October 1998 at the Goddard Institute for Space Studies in New York City] PDF Author: Measurements Conference on Light Scattering by Nonspherical Particles: Theory
Publisher:
ISBN:
Category : Electromagnetic waves
Languages : en
Pages : 610

Get Book Here

Book Description


Light Scattering by Non-Spherical Particles

Light Scattering by Non-Spherical Particles PDF Author:
Publisher:
ISBN:
Category :
Languages : un
Pages :

Get Book Here

Book Description


Electromagnetic and Light Scattering by Nonspherical Particles 2002

Electromagnetic and Light Scattering by Nonspherical Particles 2002 PDF Author: International Conference on Electromagnetic and Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications
Publisher:
ISBN:
Category : Electromagnetic theory
Languages : en
Pages : 708

Get Book Here

Book Description


Proceedings of the International Conference on Atomic, Molecular, Optical & Nano Physics with Applications

Proceedings of the International Conference on Atomic, Molecular, Optical & Nano Physics with Applications PDF Author: Vinod Singh
Publisher: Springer Nature
ISBN: 9811676917
Category : Science
Languages : en
Pages : 657

Get Book Here

Book Description
This book highlights the proceedings of the International Conference on Atomic, Molecular, Optical and Nano-Physics with Applications (CAMNP 2019), organized by the Department of Applied Physics, Delhi Technological University, New Delhi, India. It presents experimental and theoretical studies of atoms, ions, molecules and nanostructures both at the fundamental level and on the application side using advanced technology. It highlights how modern tools of high-field and ultra-fast physics are no longer merely used to observe nature but can be used to reshape and redirect atoms, molecules, particles or radiation. It brings together leading researchers and professionals on the field to present and discuss the latest finding in the following areas, but not limited to: Atomic and Molecular Structure, Collision Processes, Data Production and Applications Spectroscopy of Solar and Stellar Plasma Intense Field, Short Pulse Laser and Atto-Second Physics Laser Technology, Quantum Optics and applications Bose Einstein condensation Nanomaterials and Nanoscience Nanobiotechnolgy and Nanophotonics Nano and Micro-Electronics Computational Condensed Matter Physics

Light Scattering Media Optics

Light Scattering Media Optics PDF Author: Alex A. Kokhanovsky
Publisher: Springer Science & Business Media
ISBN: 9783540211846
Category : Computers
Languages : en
Pages : 332

Get Book Here

Book Description
The theory of the scattering of light by small particles is very important in a wide range of applications in atmospheric physics and atmospheric optics, ocean optics, remote sensing, astronomy and astrophysics and biological optics. This book summarises current knowledge of the optical properties of single small particles and natural light scattering media such as snow, clouds, foam aerosols etc. The book considers both single and multiple light scattering regimes, together with light scattering and radiative transfer in close-packed media. The third edition incorporates new findings in the area of light scattering media optics in an updated version of the text.

Light Scattering Reviews 5

Light Scattering Reviews 5 PDF Author: Alexander A. Kokhanovsky
Publisher: Springer Science & Business Media
ISBN: 3642103367
Category : Science
Languages : en
Pages : 549

Get Book Here

Book Description
Light scattering by densely packed inhomogeneous media is a particularly ch- lenging optics problem. In most cases, only approximate methods are used for the calculations. However, in the case where only a small number of macroscopic sc- tering particles are in contact (clusters or aggregates) it is possible to obtain exact results solving Maxwell’s equations. Simulations are possible, however, only for a relativelysmallnumberofparticles,especiallyiftheirsizesarelargerthanthewa- length of incident light. The ?rst review chapter in PartI of this volume, prepared by Yasuhiko Okada, presents modern numerical techniques used for the simulation of optical characteristics of densely packed groups of spherical particles. In this case, Mie theory cannot provide accurate results because particles are located in the near ?eld of each other and strongly interact. As a matter of fact, Maxwell’s equations must be solved not for each particle separately but for the ensemble as a whole in this case. The author describes techniques for the generation of shapes of aggregates. The orientation averaging is performed by a numerical integration with respect to Euler angles. The numerical aspects of various techniques such as the T-matrix method, discrete dipole approximation, the ?nite di?erence time domain method, e?ective medium theory, and generalized multi-particle Mie so- tion are presented. Recent advances in numerical techniques such as the grouping and adding method and also numerical orientation averaging using a Monte Carlo method are discussed in great depth.