Author: Martin Krenkel
Publisher: Göttingen University Press
ISBN: 3863952510
Category :
Languages : en
Pages : 238
Book Description
X-ray imaging enables the nondestructive investigation of interior structures in otherwise opaque samples. In particular the use of computed tomography (CT) allows for arbitrary virtual slices through the object and 3D information about intricate structures can be obtained. However, when it comes to image very small structures like single cells, the classical CT approach is limited by the weak absorption of soft-tissue. The use of phase information, encoded in measureable intensity images by free-space propagation of coherent x-rays, allows a huge increase in contrast, which enables 3D reconstructions at higher resolutions. In this work the application of propagation-based phase-contrast tomography to lung tissue samples is demonstrated in close to in vivo conditions. Reconstructions of the lung structure of whole mice at down to 5 μm resolution are obtained at a selfbuilt CT setup, which is based on a liquid-metal jet x-ray source. To reach even higher resolutions, synchrotron radiation in combination with suitable holographic phase-retrieval algorithms is employed. Due to optimized cone-beam geometry, field of view and resolution can be varied over a wide range of parameters, so that information on different length scales can be achieved, covering several millimeters field of view down to a 3D resolution of 50 nm. Thus, the sub-cellular 3D imaging of single cells embedded in large pieces of tissue is enabled, which paves the way for future biomedical research.
Cone-beam x-ray phase-contrast tomography for the observation of single cells in whole organs
Author: Martin Krenkel
Publisher: Göttingen University Press
ISBN: 3863952510
Category :
Languages : en
Pages : 238
Book Description
X-ray imaging enables the nondestructive investigation of interior structures in otherwise opaque samples. In particular the use of computed tomography (CT) allows for arbitrary virtual slices through the object and 3D information about intricate structures can be obtained. However, when it comes to image very small structures like single cells, the classical CT approach is limited by the weak absorption of soft-tissue. The use of phase information, encoded in measureable intensity images by free-space propagation of coherent x-rays, allows a huge increase in contrast, which enables 3D reconstructions at higher resolutions. In this work the application of propagation-based phase-contrast tomography to lung tissue samples is demonstrated in close to in vivo conditions. Reconstructions of the lung structure of whole mice at down to 5 μm resolution are obtained at a selfbuilt CT setup, which is based on a liquid-metal jet x-ray source. To reach even higher resolutions, synchrotron radiation in combination with suitable holographic phase-retrieval algorithms is employed. Due to optimized cone-beam geometry, field of view and resolution can be varied over a wide range of parameters, so that information on different length scales can be achieved, covering several millimeters field of view down to a 3D resolution of 50 nm. Thus, the sub-cellular 3D imaging of single cells embedded in large pieces of tissue is enabled, which paves the way for future biomedical research.
Publisher: Göttingen University Press
ISBN: 3863952510
Category :
Languages : en
Pages : 238
Book Description
X-ray imaging enables the nondestructive investigation of interior structures in otherwise opaque samples. In particular the use of computed tomography (CT) allows for arbitrary virtual slices through the object and 3D information about intricate structures can be obtained. However, when it comes to image very small structures like single cells, the classical CT approach is limited by the weak absorption of soft-tissue. The use of phase information, encoded in measureable intensity images by free-space propagation of coherent x-rays, allows a huge increase in contrast, which enables 3D reconstructions at higher resolutions. In this work the application of propagation-based phase-contrast tomography to lung tissue samples is demonstrated in close to in vivo conditions. Reconstructions of the lung structure of whole mice at down to 5 μm resolution are obtained at a selfbuilt CT setup, which is based on a liquid-metal jet x-ray source. To reach even higher resolutions, synchrotron radiation in combination with suitable holographic phase-retrieval algorithms is employed. Due to optimized cone-beam geometry, field of view and resolution can be varied over a wide range of parameters, so that information on different length scales can be achieved, covering several millimeters field of view down to a 3D resolution of 50 nm. Thus, the sub-cellular 3D imaging of single cells embedded in large pieces of tissue is enabled, which paves the way for future biomedical research.
Nanoscale Photonic Imaging
Author: Tim Salditt
Publisher: Springer Nature
ISBN: 3030344134
Category : Science
Languages : en
Pages : 634
Book Description
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.
Publisher: Springer Nature
ISBN: 3030344134
Category : Science
Languages : en
Pages : 634
Book Description
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.
3d virtual histology of neuronal tissue by propagation-based x-ray phase-contrast tomography
Author: Mareike Töpperwien
Publisher: Göttingen University Press
ISBN: 3863953649
Category :
Languages : en
Pages : 286
Book Description
Deciphering the three-dimensional (3d) cytoarchitecture of neuronal tissue is an important step towards understanding the connection between tissue function and structure and determining relevant changes in neurodegenerative diseases. The gold standard in pathology is histology, in which the tissue is examined under a light microscope after serial sectioning and subsequent staining. It is an invasive and labor-intensive technique which is prone to artifacts due to the slicing procedure. While it provides excellent results on the 2d slices, the 3d anatomy can only be determined after aligning the individual sections, leading to a non-isotropic resolution within the tissue. X-ray computed tomography (CT) offers a promising alternative due to its potential resolution and large penetration depth which allows for non-invasive imaging of the sample's 3d density distribution. In classical CT, contrast formation is based on absorption of the x-rays as they pass through the sample. However, weakly absorbing samples like soft tissue from the central nervous system give nearly no contrast. By exploiting the much stronger phase shifts for contrast formation, which the sample induces in a (partially) coherent wavefront, it can be substantially increased. During free-space propagation behind the sample, these phase shifts are converted to a measurable intensity image by interference of the disturbed wave fronts. In this thesis, 3d virtual histology is performed by means of propagation-based x-ray phase-contrast tomography on tissue from the central nervous system of humans and mice. A combination of synchrotron-based and laboratory setups is used to visualize the 3d density distribution on varying lengths scales from the whole organ down to single cells. By comparing and optimizing different preparation techniques and phase-retrieval approaches, even sub-cellular resolution can be reached in mm-sized tissue blocks. The development of an automatic cell segmentation workflow provides access to the 3d cellular distribution within the tissue, enabling the quantification of the cellular arrangement and allowing for extensive statistical analysis based on several thousands to millions of cells. This paves the way for biomedical studies aimed at changes in cellular distribution, e.g., in the course of neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease or ischemic stroke.
Publisher: Göttingen University Press
ISBN: 3863953649
Category :
Languages : en
Pages : 286
Book Description
Deciphering the three-dimensional (3d) cytoarchitecture of neuronal tissue is an important step towards understanding the connection between tissue function and structure and determining relevant changes in neurodegenerative diseases. The gold standard in pathology is histology, in which the tissue is examined under a light microscope after serial sectioning and subsequent staining. It is an invasive and labor-intensive technique which is prone to artifacts due to the slicing procedure. While it provides excellent results on the 2d slices, the 3d anatomy can only be determined after aligning the individual sections, leading to a non-isotropic resolution within the tissue. X-ray computed tomography (CT) offers a promising alternative due to its potential resolution and large penetration depth which allows for non-invasive imaging of the sample's 3d density distribution. In classical CT, contrast formation is based on absorption of the x-rays as they pass through the sample. However, weakly absorbing samples like soft tissue from the central nervous system give nearly no contrast. By exploiting the much stronger phase shifts for contrast formation, which the sample induces in a (partially) coherent wavefront, it can be substantially increased. During free-space propagation behind the sample, these phase shifts are converted to a measurable intensity image by interference of the disturbed wave fronts. In this thesis, 3d virtual histology is performed by means of propagation-based x-ray phase-contrast tomography on tissue from the central nervous system of humans and mice. A combination of synchrotron-based and laboratory setups is used to visualize the 3d density distribution on varying lengths scales from the whole organ down to single cells. By comparing and optimizing different preparation techniques and phase-retrieval approaches, even sub-cellular resolution can be reached in mm-sized tissue blocks. The development of an automatic cell segmentation workflow provides access to the 3d cellular distribution within the tissue, enabling the quantification of the cellular arrangement and allowing for extensive statistical analysis based on several thousands to millions of cells. This paves the way for biomedical studies aimed at changes in cellular distribution, e.g., in the course of neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease or ischemic stroke.
Multiscale X-Ray Analysis of Biological Cells and Tissues by Scanning Diffraction and Coherent Imaging
Author: Jan-David Nicolas
Publisher: Göttingen University Press
ISBN: 3863954203
Category :
Languages : en
Pages : 183
Book Description
Understanding the intricate details of muscle contraction has a long-standing tradition in biophysical research. X-ray diffraction has been one of the key techniques to resolve the nanometer-sized molecular machinery involved in force generation. Modern, powerful X-ray sources now provide billions of X-ray photons in time intervals as short as microseconds, enabling fast time-resolved experiments that shed further light on the complex relationship between muscle structure and function. Another approach harnesses this power by repeatedly performing such an experiment at different locations in a sample. With millions of repeated exposures in a single experiment, X-ray diffraction can seamlessly be turned into a raster imaging method, neatly combining real- and reciprocal space information. This thesis has focused on the advancement of this scanning scheme and its application to soft biological tissue, in particular muscle tissue. Special emphasis was placed on the extraction of meaningful, quantitative structural parameters such as the interfilament distance of the actomyosin lattice in cardiac muscle. The method was further adapted to image biological samples on a range of scales, from isolated cells to millimeter-sized tissue sections. Due to the ‘photon-hungry’ nature of the technique, its full potential is often exploited in combination with full-field imaging techniques. From the vast set of microscopic tools available, coherent full-field X-ray imaging has proven to be particularly useful. This multimodal approach allows to correlate two- and three-dimensional images of cells and tissue with diffraction maps of structure parameters. With the set of tools developed in this thesis, scanning X-ray diffraction can now be efficiently used for the structural analysis of soft biological tissues with overarching future applications in biophysical and biomedical research.
Publisher: Göttingen University Press
ISBN: 3863954203
Category :
Languages : en
Pages : 183
Book Description
Understanding the intricate details of muscle contraction has a long-standing tradition in biophysical research. X-ray diffraction has been one of the key techniques to resolve the nanometer-sized molecular machinery involved in force generation. Modern, powerful X-ray sources now provide billions of X-ray photons in time intervals as short as microseconds, enabling fast time-resolved experiments that shed further light on the complex relationship between muscle structure and function. Another approach harnesses this power by repeatedly performing such an experiment at different locations in a sample. With millions of repeated exposures in a single experiment, X-ray diffraction can seamlessly be turned into a raster imaging method, neatly combining real- and reciprocal space information. This thesis has focused on the advancement of this scanning scheme and its application to soft biological tissue, in particular muscle tissue. Special emphasis was placed on the extraction of meaningful, quantitative structural parameters such as the interfilament distance of the actomyosin lattice in cardiac muscle. The method was further adapted to image biological samples on a range of scales, from isolated cells to millimeter-sized tissue sections. Due to the ‘photon-hungry’ nature of the technique, its full potential is often exploited in combination with full-field imaging techniques. From the vast set of microscopic tools available, coherent full-field X-ray imaging has proven to be particularly useful. This multimodal approach allows to correlate two- and three-dimensional images of cells and tissue with diffraction maps of structure parameters. With the set of tools developed in this thesis, scanning X-ray diffraction can now be efficiently used for the structural analysis of soft biological tissues with overarching future applications in biophysical and biomedical research.
Biomedical Imaging
Author: Tim Salditt
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110426692
Category : Science
Languages : en
Pages : 358
Book Description
Covering both physical as well as mathematical and algorithmic foundations, this graduate textbook provides the reader with an introduction into modern biomedical imaging and image processing and reconstruction. These techniques are not only based on advanced instrumentation for image acquisition, but equally on new developments in image processing and reconstruction to extract relevant information from recorded data. To this end, the present book offers a quantitative treatise of radiography, computed tomography, and medical physics. Contents Introduction Digital image processing Essentials of medical x-ray physics Tomography Radiobiology, radiotherapy, and radiation protection Phase contrast radiography Object reconstruction under nonideal conditions
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110426692
Category : Science
Languages : en
Pages : 358
Book Description
Covering both physical as well as mathematical and algorithmic foundations, this graduate textbook provides the reader with an introduction into modern biomedical imaging and image processing and reconstruction. These techniques are not only based on advanced instrumentation for image acquisition, but equally on new developments in image processing and reconstruction to extract relevant information from recorded data. To this end, the present book offers a quantitative treatise of radiography, computed tomography, and medical physics. Contents Introduction Digital image processing Essentials of medical x-ray physics Tomography Radiobiology, radiotherapy, and radiation protection Phase contrast radiography Object reconstruction under nonideal conditions
Cone Beam Computed Tomography
Author: Chris C. Shaw
Publisher: Taylor & Francis
ISBN: 1439846278
Category : Medical
Languages : en
Pages : 266
Book Description
Conventional computed tomography (CT) techniques employ a narrow array of x-ray detectors and a fan-shaped x-ray beam to rotate around the patient to produce images of thin sections of the patient. Large sections of the body are covered by moving the patient into the rotating x-ray detector and x-ray source gantry. Cone beam CT is an alternative te
Publisher: Taylor & Francis
ISBN: 1439846278
Category : Medical
Languages : en
Pages : 266
Book Description
Conventional computed tomography (CT) techniques employ a narrow array of x-ray detectors and a fan-shaped x-ray beam to rotate around the patient to produce images of thin sections of the patient. Large sections of the body are covered by moving the patient into the rotating x-ray detector and x-ray source gantry. Cone beam CT is an alternative te
Coherent X-Ray Optics
Author: David Paganin
Publisher: Oxford University Press on Demand
ISBN: 0198567286
Category : Medical
Languages : en
Pages : 424
Book Description
X-ray optics is undergoing a renaissance, which may be paralleled to that experienced by visible-light optics following the invention of the laser. The associated surge of activity in "coherent" x-ray optics has been documented in this monograph, the first of its type in the field.
Publisher: Oxford University Press on Demand
ISBN: 0198567286
Category : Medical
Languages : en
Pages : 424
Book Description
X-ray optics is undergoing a renaissance, which may be paralleled to that experienced by visible-light optics following the invention of the laser. The associated surge of activity in "coherent" x-ray optics has been documented in this monograph, the first of its type in the field.
X-ray waveguide optics
Author: Sarah Hoffmann-Urlaub
Publisher: Göttingen University Press
ISBN: 3863953088
Category :
Languages : en
Pages : 134
Book Description
Modern x-ray sources and analysis techniques such as lens less imaging combined with phase retrieval algorithms allow for resolving structure sizes in the nanometer range. For this purpose optics have to be employed, ensuring small focal spot dimensions simultaneously with high photon densities. Furthermore, the wave front behind the optics is required to be smooth enabling for high resolution imaging. Combining all these properties, x-ray waveguides are well suited to perform this task, since the intensity distribution behind the guide is restricted in two dimensions serving as a secondary quasi point-source without wave-front aberrations, showing also a high divergence, suitable for resolving fine features. Importantly, the radiation provided by the waveguide reveals a high degree of coherence, required by many imaging techniques. The waveguide itself consists of an air-filled channel embedded in a solid matrix; typical materials are silicon, germanium or quartz. While the entrance area is nano-sized, the channel length is in the millimeter-range, this way posing challenges to fabricate high aspect ratio geometries. Since the functioning of x-ray waveguides is based on the total reflection at small incident angles, the surface roughness of the channel walls must be as low as possible to avoid scattering and hence loss of intensity. To fulfill these demanding conditions, a process scheme involving spin-coating, electron beam lithography, wet development, reactive ion etching and wafer bonding is optimized within this work. To gain deeper insights into the principle of wave guiding finite difference simulations are performed, also opening access for advanced design considerations such as gratings, tapered and curved channels, or beamsplitters, enabling for constructing novel x-ray tools as for example time delay devices or interferometers. Waveguides in all geometries are tested at synchrotron sources, accomplishing new benchmarks in x-ray optical performance. Here, the x-ray beam leaving the channel, propagates out to a pixel array detector in the far-field region. From the recorded data the intensity distribution in the near-field directly behind the waveguide is reconstructed, revealing an outstanding agreement with the simulations and electron micrographs. Since the radiation field of the waveguide is well-characterized and also tunable to meet the requirements of both the measurement setup and the sample, they are suited of a broad field of applications in coherent x-ray imaging.
Publisher: Göttingen University Press
ISBN: 3863953088
Category :
Languages : en
Pages : 134
Book Description
Modern x-ray sources and analysis techniques such as lens less imaging combined with phase retrieval algorithms allow for resolving structure sizes in the nanometer range. For this purpose optics have to be employed, ensuring small focal spot dimensions simultaneously with high photon densities. Furthermore, the wave front behind the optics is required to be smooth enabling for high resolution imaging. Combining all these properties, x-ray waveguides are well suited to perform this task, since the intensity distribution behind the guide is restricted in two dimensions serving as a secondary quasi point-source without wave-front aberrations, showing also a high divergence, suitable for resolving fine features. Importantly, the radiation provided by the waveguide reveals a high degree of coherence, required by many imaging techniques. The waveguide itself consists of an air-filled channel embedded in a solid matrix; typical materials are silicon, germanium or quartz. While the entrance area is nano-sized, the channel length is in the millimeter-range, this way posing challenges to fabricate high aspect ratio geometries. Since the functioning of x-ray waveguides is based on the total reflection at small incident angles, the surface roughness of the channel walls must be as low as possible to avoid scattering and hence loss of intensity. To fulfill these demanding conditions, a process scheme involving spin-coating, electron beam lithography, wet development, reactive ion etching and wafer bonding is optimized within this work. To gain deeper insights into the principle of wave guiding finite difference simulations are performed, also opening access for advanced design considerations such as gratings, tapered and curved channels, or beamsplitters, enabling for constructing novel x-ray tools as for example time delay devices or interferometers. Waveguides in all geometries are tested at synchrotron sources, accomplishing new benchmarks in x-ray optical performance. Here, the x-ray beam leaving the channel, propagates out to a pixel array detector in the far-field region. From the recorded data the intensity distribution in the near-field directly behind the waveguide is reconstructed, revealing an outstanding agreement with the simulations and electron micrographs. Since the radiation field of the waveguide is well-characterized and also tunable to meet the requirements of both the measurement setup and the sample, they are suited of a broad field of applications in coherent x-ray imaging.
The Guide to Investigation of Mouse Pregnancy
Author: B. Anne Croy
Publisher: Academic Press
ISBN: 0123947944
Category : Science
Languages : en
Pages : 829
Book Description
The Guide to Investigation of Mouse Pregnancy is the first publication to cover the mouse placenta or the angiogenic tree the mother develops to support the placenta. This much-needed resource covers monitoring of the cardiovascular system, gestational programming of chronic adult disease, epigenetic regulation, gene imprinting, and stem cells. Offering detailed and integrated information on how drugs, biologics, stress, and manipulations impact pregnancy in the mouse model, this reference highlights techniques used to analyze mouse pregnancy. Joining the ranks of much referenced mouse resources, The Guide to Investigation of Mouse Pregnancy is the only manual providing needed content on pregnancy in animal models for translational medicine and research. - Provides instruction on how to collect pre-clinical data on pregnancy in mouse models for eventual use in human applications - Describes the angiogenic tree the mother's uterus develops to support pregnancy and the monitoring of pregnancy-induced cardiovascular changes - Educates readers on placental cell lineages, decidual development including immune cells, epigenetic regulation, gene imprinting, stem cells, birth and lactation - Discusses how stress, environmental toxicants and other manipulations impact upon placental function and pregnancy success
Publisher: Academic Press
ISBN: 0123947944
Category : Science
Languages : en
Pages : 829
Book Description
The Guide to Investigation of Mouse Pregnancy is the first publication to cover the mouse placenta or the angiogenic tree the mother develops to support the placenta. This much-needed resource covers monitoring of the cardiovascular system, gestational programming of chronic adult disease, epigenetic regulation, gene imprinting, and stem cells. Offering detailed and integrated information on how drugs, biologics, stress, and manipulations impact pregnancy in the mouse model, this reference highlights techniques used to analyze mouse pregnancy. Joining the ranks of much referenced mouse resources, The Guide to Investigation of Mouse Pregnancy is the only manual providing needed content on pregnancy in animal models for translational medicine and research. - Provides instruction on how to collect pre-clinical data on pregnancy in mouse models for eventual use in human applications - Describes the angiogenic tree the mother's uterus develops to support pregnancy and the monitoring of pregnancy-induced cardiovascular changes - Educates readers on placental cell lineages, decidual development including immune cells, epigenetic regulation, gene imprinting, stem cells, birth and lactation - Discusses how stress, environmental toxicants and other manipulations impact upon placental function and pregnancy success
Medical Imaging Systems
Author: Andreas Maier
Publisher: Springer
ISBN: 3319965204
Category : Computers
Languages : en
Pages : 263
Book Description
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
Publisher: Springer
ISBN: 3319965204
Category : Computers
Languages : en
Pages : 263
Book Description
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.