Author: Adam Jablonski
Publisher: Springer Nature
ISBN: 3030627497
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
This book offers the first comprehensive and practice-oriented guide to condition monitoring algorithms in MATLAB®. After a concise introduction to vibration theory and signal processing techniques, the attention is moved to the algorithms. Each signal processing algorithm is presented in depth, from the theory to the application, and including extensive explanations on how to use the corresponding toolbox in MATLAB®. In turn, the book introduces various techniques for synthetic signals generation, as well as vibration-based analysis techniques for large data sets. A practical guide on how to directly access data from industrial condition monitoring systems (CMS) using MATLAB® .NET Libraries is also included. Bridging between research and practice, this book offers an extensive guide on condition monitoring algorithms to both scholars and professionals. “Condition Monitoring Algorithms in MATLAB® is a great resource for anyone in the field of condition monitoring. It is a unique as it presents the theory, and a number of examples in Matlab®, which greatly improve the learning experience. It offers numerous examples of coding styles in Matlab, thus supporting graduate students and professionals writing their own codes." Dr. Eric Bechhoefer Founder and CEO of GPMS Developer of the Foresight MX Health and Usage Monitoring System
Condition Monitoring Algorithms in MATLAB®
Condition Monitoring Algorithms in MATLAB®
Author: Adam Jablonski
Publisher:
ISBN: 9783030627508
Category :
Languages : en
Pages : 0
Book Description
This book offers the first comprehensive and practice-oriented guide to condition monitoring algorithms in MATLAB®. After a concise introduction to vibration theory and signal processing techniques, the attention is moved to the algorithms. Each signal processing algorithm is presented in depth, from the theory to the application, and including extensive explanations on how to use the corresponding toolbox in MATLAB®. In turn, the book introduces various techniques for synthetic signals generation, as well as vibration-based analysis techniques for large data sets. A practical guide on how to directly access data from industrial condition monitoring systems (CMS) using MATLAB® .NET Libraries is also included. Bridging between research and practice, this book offers an extensive guide on condition monitoring algorithms to both scholars and professionals. "Condition Monitoring Algorithms in MATLAB® is a great resource for anyone in the field of condition monitoring. It is a unique as it presents the theory, and a number of examples in Matlab®, which greatly improve the learning experience. It offers numerous examples of coding styles in Matlab, thus supporting graduate students and professionals writing their own codes." Dr. Eric Bechhoefer Founder and CEO of GPMS Developer of the Foresight MX Health and Usage Monitoring System.
Publisher:
ISBN: 9783030627508
Category :
Languages : en
Pages : 0
Book Description
This book offers the first comprehensive and practice-oriented guide to condition monitoring algorithms in MATLAB®. After a concise introduction to vibration theory and signal processing techniques, the attention is moved to the algorithms. Each signal processing algorithm is presented in depth, from the theory to the application, and including extensive explanations on how to use the corresponding toolbox in MATLAB®. In turn, the book introduces various techniques for synthetic signals generation, as well as vibration-based analysis techniques for large data sets. A practical guide on how to directly access data from industrial condition monitoring systems (CMS) using MATLAB® .NET Libraries is also included. Bridging between research and practice, this book offers an extensive guide on condition monitoring algorithms to both scholars and professionals. "Condition Monitoring Algorithms in MATLAB® is a great resource for anyone in the field of condition monitoring. It is a unique as it presents the theory, and a number of examples in Matlab®, which greatly improve the learning experience. It offers numerous examples of coding styles in Matlab, thus supporting graduate students and professionals writing their own codes." Dr. Eric Bechhoefer Founder and CEO of GPMS Developer of the Foresight MX Health and Usage Monitoring System.
Condition Monitoring with Vibration Signals
Author: Hosameldin Ahmed
Publisher: John Wiley & Sons
ISBN: 1119544629
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
Provides an extensive, up-to-date treatment of techniques used for machine condition monitoring Clear and concise throughout, this accessible book is the first to be wholly devoted to the field of condition monitoring for rotating machines using vibration signals. It covers various feature extraction, feature selection, and classification methods as well as their applications to machine vibration datasets. It also presents new methods including machine learning and compressive sampling, which help to improve safety, reliability, and performance. Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines starts by introducing readers to Vibration Analysis Techniques and Machine Condition Monitoring (MCM). It then offers readers sections covering: Rotating Machine Condition Monitoring using Learning Algorithms; Classification Algorithms; and New Fault Diagnosis Frameworks designed for MCM. Readers will learn signal processing in the time-frequency domain, methods for linear subspace learning, and the basic principles of the learning method Artificial Neural Network (ANN). They will also discover recent trends of deep learning in the field of machine condition monitoring, new feature learning frameworks based on compressive sampling, subspace learning techniques for machine condition monitoring, and much more. Covers the fundamental as well as the state-of-the-art approaches to machine condition monitoringguiding readers from the basics of rotating machines to the generation of knowledge using vibration signals Provides new methods, including machine learning and compressive sampling, which offer significant improvements in accuracy with reduced computational costs Features learning algorithms that can be used for fault diagnosis and prognosis Includes previously and recently developed dimensionality reduction techniques and classification algorithms Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines is an excellent book for research students, postgraduate students, industrial practitioners, and researchers.
Publisher: John Wiley & Sons
ISBN: 1119544629
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
Provides an extensive, up-to-date treatment of techniques used for machine condition monitoring Clear and concise throughout, this accessible book is the first to be wholly devoted to the field of condition monitoring for rotating machines using vibration signals. It covers various feature extraction, feature selection, and classification methods as well as their applications to machine vibration datasets. It also presents new methods including machine learning and compressive sampling, which help to improve safety, reliability, and performance. Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines starts by introducing readers to Vibration Analysis Techniques and Machine Condition Monitoring (MCM). It then offers readers sections covering: Rotating Machine Condition Monitoring using Learning Algorithms; Classification Algorithms; and New Fault Diagnosis Frameworks designed for MCM. Readers will learn signal processing in the time-frequency domain, methods for linear subspace learning, and the basic principles of the learning method Artificial Neural Network (ANN). They will also discover recent trends of deep learning in the field of machine condition monitoring, new feature learning frameworks based on compressive sampling, subspace learning techniques for machine condition monitoring, and much more. Covers the fundamental as well as the state-of-the-art approaches to machine condition monitoringguiding readers from the basics of rotating machines to the generation of knowledge using vibration signals Provides new methods, including machine learning and compressive sampling, which offer significant improvements in accuracy with reduced computational costs Features learning algorithms that can be used for fault diagnosis and prognosis Includes previously and recently developed dimensionality reduction techniques and classification algorithms Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines is an excellent book for research students, postgraduate students, industrial practitioners, and researchers.
Vibration-based Condition Monitoring
Author: Robert Bond Randall
Publisher: John Wiley & Sons
ISBN: 0470977582
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
"Without doubt the best modern and up-to-date text on the topic, wirtten by one of the world leading experts in the field. Should be on the desk of any practitioner or researcher involved in the field of Machine Condition Monitoring" Simon Braun, Israel Institute of Technology Explaining complex ideas in an easy to understand way, Vibration-based Condition Monitoring provides a comprehensive survey of the application of vibration analysis to the condition monitoring of machines. Reflecting the natural progression of these systems by presenting the fundamental material and then moving onto detection, diagnosis and prognosis, Randall presents classic and state-of-the-art research results that cover vibration signals from rotating and reciprocating machines; basic signal processing techniques; fault detection; diagnostic techniques, and prognostics. Developed out of notes for a course in machine condition monitoring given by Robert Bond Randall over ten years at the University of New South Wales, Vibration-based Condition Monitoring: Industrial, Aerospace and Automotive Applications is essential reading for graduate and postgraduate students/ researchers in machine condition monitoring and diagnostics as well as condition monitoring practitioners and machine manufacturers who want to include a machine monitoring service with their product. Includes a number of exercises for each chapter, many based on Matlab, to illustrate basic points as well as to facilitate the use of the book as a textbook for courses in the topic. Accompanied by a website www.wiley.com/go/randall housing exercises along with data sets and implementation code in Matlab for some of the methods as well as other pedagogical aids. Authored by an internationally recognised authority in the area of condition monitoring.
Publisher: John Wiley & Sons
ISBN: 0470977582
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
"Without doubt the best modern and up-to-date text on the topic, wirtten by one of the world leading experts in the field. Should be on the desk of any practitioner or researcher involved in the field of Machine Condition Monitoring" Simon Braun, Israel Institute of Technology Explaining complex ideas in an easy to understand way, Vibration-based Condition Monitoring provides a comprehensive survey of the application of vibration analysis to the condition monitoring of machines. Reflecting the natural progression of these systems by presenting the fundamental material and then moving onto detection, diagnosis and prognosis, Randall presents classic and state-of-the-art research results that cover vibration signals from rotating and reciprocating machines; basic signal processing techniques; fault detection; diagnostic techniques, and prognostics. Developed out of notes for a course in machine condition monitoring given by Robert Bond Randall over ten years at the University of New South Wales, Vibration-based Condition Monitoring: Industrial, Aerospace and Automotive Applications is essential reading for graduate and postgraduate students/ researchers in machine condition monitoring and diagnostics as well as condition monitoring practitioners and machine manufacturers who want to include a machine monitoring service with their product. Includes a number of exercises for each chapter, many based on Matlab, to illustrate basic points as well as to facilitate the use of the book as a textbook for courses in the topic. Accompanied by a website www.wiley.com/go/randall housing exercises along with data sets and implementation code in Matlab for some of the methods as well as other pedagogical aids. Authored by an internationally recognised authority in the area of condition monitoring.
Machinery Condition Monitoring
Author: Amiya Ranjan Mohanty
Publisher: CRC Press
ISBN: 1466593059
Category : Science
Languages : en
Pages : 256
Book Description
Find the Fault in the Machines- Drawing on the author’s more than two decades of experience with machinery condition monitoring and consulting for industries in India and abroad, Machinery Condition Monitoring: Principles and Practices introduces the practicing engineer to the techniques used to effectively detect and diagnose faults in machines. Providing the working principle behind the instruments, the important elements of machines as well as the technique to understand their conditions, this text presents every available method of machine fault detection occurring in machines in general, and rotating machines in particular. A Single-Source Solution for Practice Machinery Conditioning Monitoring- Since vibration is one of the most widely used fault detection techniques, the book offers an assessment of vibration analysis and rotor-dynamics. It also covers the techniques of wear and debris analysis, and motor current signature analysis to detect faults in rotating mechanical systems as well as thermography, the nondestructive test NDT techniques (ultrasonics and radiography), and additional methods. The author includes relevant case studies from his own experience spanning over the past 20 years, and detailing practical fault diagnosis exercises involving various industries ranging from steel and cement plants to gas turbine driven frigates. While mathematics is kept to a minimum, he also provides worked examples and MATLAB® codes. This book contains 15 chapters and provides topical information that includes: A brief overview of the maintenance techniques Fundamentals of machinery vibration and rotor dynamics Basics of signal processing and instrumentation, which are essential for monitoring the health of machines Requirements of vibration monitoring and noise monitoring Electrical machinery faults Thermography for condition monitoring Techniques of wear debris analysis and some of the nondestructive test (NDT) techniques for condition monitoring like ultrasonics and radiography Machine tool condition monitoring Engineering failure analysis Several case studies, mostly on failure analysis, from the author’s consulting experience Machinery Condition Monitoring: Principles and Practices presents the latest techniques in fault diagnosis and prognosis, provides many real-life practical examples, and empowers you to diagnose the faults in machines all on your own.
Publisher: CRC Press
ISBN: 1466593059
Category : Science
Languages : en
Pages : 256
Book Description
Find the Fault in the Machines- Drawing on the author’s more than two decades of experience with machinery condition monitoring and consulting for industries in India and abroad, Machinery Condition Monitoring: Principles and Practices introduces the practicing engineer to the techniques used to effectively detect and diagnose faults in machines. Providing the working principle behind the instruments, the important elements of machines as well as the technique to understand their conditions, this text presents every available method of machine fault detection occurring in machines in general, and rotating machines in particular. A Single-Source Solution for Practice Machinery Conditioning Monitoring- Since vibration is one of the most widely used fault detection techniques, the book offers an assessment of vibration analysis and rotor-dynamics. It also covers the techniques of wear and debris analysis, and motor current signature analysis to detect faults in rotating mechanical systems as well as thermography, the nondestructive test NDT techniques (ultrasonics and radiography), and additional methods. The author includes relevant case studies from his own experience spanning over the past 20 years, and detailing practical fault diagnosis exercises involving various industries ranging from steel and cement plants to gas turbine driven frigates. While mathematics is kept to a minimum, he also provides worked examples and MATLAB® codes. This book contains 15 chapters and provides topical information that includes: A brief overview of the maintenance techniques Fundamentals of machinery vibration and rotor dynamics Basics of signal processing and instrumentation, which are essential for monitoring the health of machines Requirements of vibration monitoring and noise monitoring Electrical machinery faults Thermography for condition monitoring Techniques of wear debris analysis and some of the nondestructive test (NDT) techniques for condition monitoring like ultrasonics and radiography Machine tool condition monitoring Engineering failure analysis Several case studies, mostly on failure analysis, from the author’s consulting experience Machinery Condition Monitoring: Principles and Practices presents the latest techniques in fault diagnosis and prognosis, provides many real-life practical examples, and empowers you to diagnose the faults in machines all on your own.
Condition Monitoring and Diagnostic Engineering Management
Author: A. Starr
Publisher: Elsevier
ISBN: 0080550789
Category : Technology & Engineering
Languages : en
Pages : 1021
Book Description
This Proceedings contains the papers presented at the 14th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2001), held in Manchester, UK, on 4-6 September 2001. COMADEM 2001 builds on the excellent reputation of previous conferences in this series, and is essential for anyone working in the field of condition monitoring and maintenance management.The scope of the conference is truly interdisciplinary. The Proceedings contains papers from six continents, written by experts in industry and academia the world over, bringing together the latest thoughts on topics including: Condition-based maintenance Reliability centred maintenance Asset management Industrial case studies Fault detection and diagnosis Prognostics Non-destructive evaluation Integrated diagnostics Vibration Oil and debris analysis Tribology Thermal techniques Risk assessment Structural health monitoring Sensor technology Advanced signal processing Neural networks Multivariate statistics Data compression and fusion This Proceedings also contains a wealth of industrial case studies, and the latest developments in education, training and certification. For more information on COMADEM's aims and scope, please visit http://www.comadem.com
Publisher: Elsevier
ISBN: 0080550789
Category : Technology & Engineering
Languages : en
Pages : 1021
Book Description
This Proceedings contains the papers presented at the 14th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2001), held in Manchester, UK, on 4-6 September 2001. COMADEM 2001 builds on the excellent reputation of previous conferences in this series, and is essential for anyone working in the field of condition monitoring and maintenance management.The scope of the conference is truly interdisciplinary. The Proceedings contains papers from six continents, written by experts in industry and academia the world over, bringing together the latest thoughts on topics including: Condition-based maintenance Reliability centred maintenance Asset management Industrial case studies Fault detection and diagnosis Prognostics Non-destructive evaluation Integrated diagnostics Vibration Oil and debris analysis Tribology Thermal techniques Risk assessment Structural health monitoring Sensor technology Advanced signal processing Neural networks Multivariate statistics Data compression and fusion This Proceedings also contains a wealth of industrial case studies, and the latest developments in education, training and certification. For more information on COMADEM's aims and scope, please visit http://www.comadem.com
Gas Turbine Diagnostics
Author: Ranjan Ganguli
Publisher: CRC Press
ISBN: 146650272X
Category : Science
Languages : en
Pages : 255
Book Description
Widely used for power generation, gas turbine engines are susceptible to faults due to the harsh working environment. Most engine problems are preceded by a sharp change in measurement deviations compared to a baseline engine, but the trend data of these deviations over time are contaminated with noise and non-Gaussian outliers. Gas Turbine Diagnostics: Signal Processing and Fault Isolation presents signal processing algorithms to improve fault diagnosis in gas turbine engines, particularly jet engines. The algorithms focus on removing noise and outliers while keeping the key signal features that may indicate a fault. The book brings together recent methods in data filtering, trend shift detection, and fault isolation, including several novel approaches proposed by the author. Each method is demonstrated through numerical simulations that can be easily performed by the reader. Coverage includes: Filters for gas turbines with slow data availability Hybrid filters for engines equipped with faster data monitoring systems Nonlinear myriad filters for cases where monitoring of transient data can lead to better fault detection Innovative nonlinear filters for data cleaning developed using optimization methods An edge detector based on gradient and Laplacian calculations A process of automating fault isolation using a bank of Kalman filters, fuzzy logic systems, neural networks, and genetic fuzzy systems when an engine model is available An example of vibration-based diagnostics for turbine blades to complement the performance-based methods Using simple examples, the book describes new research tools to more effectively isolate faults in gas turbine engines. These algorithms may also be useful for condition and health monitoring in other systems where sharp changes in measurement data indicate the onset of a fault.
Publisher: CRC Press
ISBN: 146650272X
Category : Science
Languages : en
Pages : 255
Book Description
Widely used for power generation, gas turbine engines are susceptible to faults due to the harsh working environment. Most engine problems are preceded by a sharp change in measurement deviations compared to a baseline engine, but the trend data of these deviations over time are contaminated with noise and non-Gaussian outliers. Gas Turbine Diagnostics: Signal Processing and Fault Isolation presents signal processing algorithms to improve fault diagnosis in gas turbine engines, particularly jet engines. The algorithms focus on removing noise and outliers while keeping the key signal features that may indicate a fault. The book brings together recent methods in data filtering, trend shift detection, and fault isolation, including several novel approaches proposed by the author. Each method is demonstrated through numerical simulations that can be easily performed by the reader. Coverage includes: Filters for gas turbines with slow data availability Hybrid filters for engines equipped with faster data monitoring systems Nonlinear myriad filters for cases where monitoring of transient data can lead to better fault detection Innovative nonlinear filters for data cleaning developed using optimization methods An edge detector based on gradient and Laplacian calculations A process of automating fault isolation using a bank of Kalman filters, fuzzy logic systems, neural networks, and genetic fuzzy systems when an engine model is available An example of vibration-based diagnostics for turbine blades to complement the performance-based methods Using simple examples, the book describes new research tools to more effectively isolate faults in gas turbine engines. These algorithms may also be useful for condition and health monitoring in other systems where sharp changes in measurement data indicate the onset of a fault.
Simulation Techniques of Digital Twin in Real-Time Applications
Author: Abhineet Anand
Publisher: John Wiley & Sons
ISBN: 1394256981
Category : Computers
Languages : en
Pages : 389
Book Description
SIMULATION TECHNIQUES OF DIGITAL TWIN IN REAL-TIME APPLICATIONS The book gives a complete overview of implementing digital twin technology in real-time scenarios while emphasizing how this technology can be embedded with running technologies to solve all other issues. Divided into two parts with Part 1 focusing on simulated techniques in digital twin technology and Part 2 on real-time applications of digital twin technology, the book collects a significant number of important research articles from domain-specific experts. The book sheds light on the various techniques of digital twin technology that are implemented in various application areas. It emphasizes error findings and respective solutions before the actual event happens. Most of the features in the book are on the implementation of strategies in real-time applications. Various real-life experiences are taken to show the proper implementation of simulation technologies. The book shows how engineers of any technology can input their research ideas to convert to real scenarios by using replicas. Hence, the book has a collection of research articles from various engineers with expertise in different technologies from many regions of the world. It shows how to implement the embedded real-time data into technologies. Specifically, the chapters relate to the auto landing and cruising features in aerial vehicles, automated coal mining simulation strategy, the enhancement of workshop equipment, and implementation in power energy management for urban railways. This book also describes the coherent mechanism of digital twin technologies with deep neural networks and artificial intelligence. Audience Researchers, engineers, and students in computer science, software engineering and industrial engineering, will find this book to be very useful.
Publisher: John Wiley & Sons
ISBN: 1394256981
Category : Computers
Languages : en
Pages : 389
Book Description
SIMULATION TECHNIQUES OF DIGITAL TWIN IN REAL-TIME APPLICATIONS The book gives a complete overview of implementing digital twin technology in real-time scenarios while emphasizing how this technology can be embedded with running technologies to solve all other issues. Divided into two parts with Part 1 focusing on simulated techniques in digital twin technology and Part 2 on real-time applications of digital twin technology, the book collects a significant number of important research articles from domain-specific experts. The book sheds light on the various techniques of digital twin technology that are implemented in various application areas. It emphasizes error findings and respective solutions before the actual event happens. Most of the features in the book are on the implementation of strategies in real-time applications. Various real-life experiences are taken to show the proper implementation of simulation technologies. The book shows how engineers of any technology can input their research ideas to convert to real scenarios by using replicas. Hence, the book has a collection of research articles from various engineers with expertise in different technologies from many regions of the world. It shows how to implement the embedded real-time data into technologies. Specifically, the chapters relate to the auto landing and cruising features in aerial vehicles, automated coal mining simulation strategy, the enhancement of workshop equipment, and implementation in power energy management for urban railways. This book also describes the coherent mechanism of digital twin technologies with deep neural networks and artificial intelligence. Audience Researchers, engineers, and students in computer science, software engineering and industrial engineering, will find this book to be very useful.
Condition Monitoring of Machinery in Non-Stationary Operations
Author: Tahar Fakhfakh
Publisher: Springer Science & Business Media
ISBN: 3642287689
Category : Technology & Engineering
Languages : en
Pages : 621
Book Description
Condition monitoring of machines in non-stationary operations (CMMNO) can be seen as the major challenge for research in the field of machinery diagnostics. Condition monitoring of machines in non-stationary operations is the title of the presented book and the title of the Conference held in Hammamet - Tunisia March 26 – 28, 2012. It is the second conference under this title, first took place in Wroclaw - Poland , March 2011. The subject CMMNO comes directly from industry needs and observation of real objects. Most monitored and diagnosed objects used in industry works in non-stationary operations condition. The non-stationary operations come from fulfillment of machinery tasks, for which they are designed for. All machinery used in different kind of mines, transport systems, vehicles like: cars, buses etc, helicopters, ships and battleships and so on work in non-stationary operations. The papers included in the book are shaped by the organizing board of the conference and authors of the papers. The papers are divided into five sections, namely: Condition monitoring of machines in non-stationary operations Modeling of dynamics and fault in systems Signal processing and Pattern recognition Monitoring and diagnostic systems Noise and vibration of machines The presented book gives the back ground to the main objective of the CMMNO 2012 conference that is to bring together scientific community to discuss the major advances in the field of machinery condition monitoring in non-stationary conditions.
Publisher: Springer Science & Business Media
ISBN: 3642287689
Category : Technology & Engineering
Languages : en
Pages : 621
Book Description
Condition monitoring of machines in non-stationary operations (CMMNO) can be seen as the major challenge for research in the field of machinery diagnostics. Condition monitoring of machines in non-stationary operations is the title of the presented book and the title of the Conference held in Hammamet - Tunisia March 26 – 28, 2012. It is the second conference under this title, first took place in Wroclaw - Poland , March 2011. The subject CMMNO comes directly from industry needs and observation of real objects. Most monitored and diagnosed objects used in industry works in non-stationary operations condition. The non-stationary operations come from fulfillment of machinery tasks, for which they are designed for. All machinery used in different kind of mines, transport systems, vehicles like: cars, buses etc, helicopters, ships and battleships and so on work in non-stationary operations. The papers included in the book are shaped by the organizing board of the conference and authors of the papers. The papers are divided into five sections, namely: Condition monitoring of machines in non-stationary operations Modeling of dynamics and fault in systems Signal processing and Pattern recognition Monitoring and diagnostic systems Noise and vibration of machines The presented book gives the back ground to the main objective of the CMMNO 2012 conference that is to bring together scientific community to discuss the major advances in the field of machinery condition monitoring in non-stationary conditions.
AI and Machine Learning Paradigms for Health Monitoring System
Author: Hasmat Malik
Publisher: Springer Nature
ISBN: 9813344121
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
This book embodies principles and applications of advanced soft computing approaches in engineering, healthcare and allied domains directed toward the researchers aspiring to learn and apply intelligent data analytics techniques. The first part covers AI, machine learning and data analytics tools and techniques and their applications to the class of several hospital and health real-life problems. In the later part, the applications of AI, ML and data analytics shall be covered over the wide variety of applications in hospital, health, engineering and/or applied sciences such as the clinical services, medical image analysis, management support, quality analysis, bioinformatics, device analysis and operations. The book presents knowledge of experts in the form of chapters with the objective to introduce the theme of intelligent data analytics and discusses associated theoretical applications. At last, it presents simulation codes for the problems included in the book for better understanding for beginners.
Publisher: Springer Nature
ISBN: 9813344121
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
This book embodies principles and applications of advanced soft computing approaches in engineering, healthcare and allied domains directed toward the researchers aspiring to learn and apply intelligent data analytics techniques. The first part covers AI, machine learning and data analytics tools and techniques and their applications to the class of several hospital and health real-life problems. In the later part, the applications of AI, ML and data analytics shall be covered over the wide variety of applications in hospital, health, engineering and/or applied sciences such as the clinical services, medical image analysis, management support, quality analysis, bioinformatics, device analysis and operations. The book presents knowledge of experts in the form of chapters with the objective to introduce the theme of intelligent data analytics and discusses associated theoretical applications. At last, it presents simulation codes for the problems included in the book for better understanding for beginners.