Author: Paul E. Pfeiffer
Publisher: Courier Corporation
ISBN: 0486165663
Category : Mathematics
Languages : en
Pages : 418
Book Description
Using the Kolmogorov model, this intermediate-level text discusses random variables, probability distributions, mathematical expectation, random processes, more. For advanced undergraduates students of science, engineering, or math. Includes problems with answers and six appendixes. 1965 edition.
Concepts of Probability Theory
Author: Paul E. Pfeiffer
Publisher: Courier Corporation
ISBN: 0486165663
Category : Mathematics
Languages : en
Pages : 418
Book Description
Using the Kolmogorov model, this intermediate-level text discusses random variables, probability distributions, mathematical expectation, random processes, more. For advanced undergraduates students of science, engineering, or math. Includes problems with answers and six appendixes. 1965 edition.
Publisher: Courier Corporation
ISBN: 0486165663
Category : Mathematics
Languages : en
Pages : 418
Book Description
Using the Kolmogorov model, this intermediate-level text discusses random variables, probability distributions, mathematical expectation, random processes, more. For advanced undergraduates students of science, engineering, or math. Includes problems with answers and six appendixes. 1965 edition.
Probability Theory
Author: R.G. Laha
Publisher: Courier Dover Publications
ISBN: 0486842304
Category : Mathematics
Languages : en
Pages : 576
Book Description
This comprehensive presentation of the basic concepts of probability theory examines both classical and modern methods. The treatment emphasizes the relationship between probability theory and mathematical analysis, and it stresses applications to statistics as well as to analysis. Topics include: • The laws of large numbers • Distribution and characteristic functions • The central limit problem • Dependence • Random variables taking values in a normed linear space Each chapter features worked examples in addition to problems, and bibliographical references to supplementary reading material enhance the text. For advanced undergraduates and graduate students in mathematics.
Publisher: Courier Dover Publications
ISBN: 0486842304
Category : Mathematics
Languages : en
Pages : 576
Book Description
This comprehensive presentation of the basic concepts of probability theory examines both classical and modern methods. The treatment emphasizes the relationship between probability theory and mathematical analysis, and it stresses applications to statistics as well as to analysis. Topics include: • The laws of large numbers • Distribution and characteristic functions • The central limit problem • Dependence • Random variables taking values in a normed linear space Each chapter features worked examples in addition to problems, and bibliographical references to supplementary reading material enhance the text. For advanced undergraduates and graduate students in mathematics.
An Elementary Introduction to the Theory of Probability
Author: Boris Vladimirovich Gnedenko
Publisher: Courier Corporation
ISBN: 0486601552
Category : Mathematics
Languages : en
Pages : 162
Book Description
This compact volume equips the reader with all the facts and principles essential to a fundamental understanding of the theory of probability. It is an introduction, no more: throughout the book the authors discuss the theory of probability for situations having only a finite number of possibilities, and the mathematics employed is held to the elementary level. But within its purposely restricted range it is extremely thorough, well organized, and absolutely authoritative. It is the only English translation of the latest revised Russian edition; and it is the only current translation on the market that has been checked and approved by Gnedenko himself. After explaining in simple terms the meaning of the concept of probability and the means by which an event is declared to be in practice, impossible, the authors take up the processes involved in the calculation of probabilities. They survey the rules for addition and multiplication of probabilities, the concept of conditional probability, the formula for total probability, Bayes's formula, Bernoulli's scheme and theorem, the concepts of random variables, insufficiency of the mean value for the characterization of a random variable, methods of measuring the variance of a random variable, theorems on the standard deviation, the Chebyshev inequality, normal laws of distribution, distribution curves, properties of normal distribution curves, and related topics. The book is unique in that, while there are several high school and college textbooks available on this subject, there is no other popular treatment for the layman that contains quite the same material presented with the same degree of clarity and authenticity. Anyone who desires a fundamental grasp of this increasingly important subject cannot do better than to start with this book. New preface for Dover edition by B. V. Gnedenko.
Publisher: Courier Corporation
ISBN: 0486601552
Category : Mathematics
Languages : en
Pages : 162
Book Description
This compact volume equips the reader with all the facts and principles essential to a fundamental understanding of the theory of probability. It is an introduction, no more: throughout the book the authors discuss the theory of probability for situations having only a finite number of possibilities, and the mathematics employed is held to the elementary level. But within its purposely restricted range it is extremely thorough, well organized, and absolutely authoritative. It is the only English translation of the latest revised Russian edition; and it is the only current translation on the market that has been checked and approved by Gnedenko himself. After explaining in simple terms the meaning of the concept of probability and the means by which an event is declared to be in practice, impossible, the authors take up the processes involved in the calculation of probabilities. They survey the rules for addition and multiplication of probabilities, the concept of conditional probability, the formula for total probability, Bayes's formula, Bernoulli's scheme and theorem, the concepts of random variables, insufficiency of the mean value for the characterization of a random variable, methods of measuring the variance of a random variable, theorems on the standard deviation, the Chebyshev inequality, normal laws of distribution, distribution curves, properties of normal distribution curves, and related topics. The book is unique in that, while there are several high school and college textbooks available on this subject, there is no other popular treatment for the layman that contains quite the same material presented with the same degree of clarity and authenticity. Anyone who desires a fundamental grasp of this increasingly important subject cannot do better than to start with this book. New preface for Dover edition by B. V. Gnedenko.
Basic Probability Theory
Author: Robert B. Ash
Publisher: Courier Corporation
ISBN: 0486466280
Category : Mathematics
Languages : en
Pages : 354
Book Description
This introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus. Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.
Publisher: Courier Corporation
ISBN: 0486466280
Category : Mathematics
Languages : en
Pages : 354
Book Description
This introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus. Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.
Introduction to Probability
Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Basic Concepts of Probability and Statistics
Author: J. L. Hodges, Jr.
Publisher: SIAM
ISBN: 089871575X
Category : Mathematics
Languages : en
Pages : 450
Book Description
This book provides a mathematically rigorous introduction to the fundamental ideas of modern statistics for readers without a calculus background.
Publisher: SIAM
ISBN: 089871575X
Category : Mathematics
Languages : en
Pages : 450
Book Description
This book provides a mathematically rigorous introduction to the fundamental ideas of modern statistics for readers without a calculus background.
Advanced Probability Theory, Second Edition,
Author: Janos Galambos
Publisher: CRC Press
ISBN: 9780824793326
Category : Mathematics
Languages : en
Pages : 484
Book Description
This work thoroughly covers the concepts and main results of probability theory, from its fundamental principles to advanced applications. This edition provides examples early in the text of practical problems such as the safety of a piece of engineering equipment or the inevitability of wrong conclusions in seemingly accurate medical tests for AIDS and cancer.;College or university bookstores may order five or more copies at a special student price which is available upon request from Marcel Dekker, Inc.
Publisher: CRC Press
ISBN: 9780824793326
Category : Mathematics
Languages : en
Pages : 484
Book Description
This work thoroughly covers the concepts and main results of probability theory, from its fundamental principles to advanced applications. This edition provides examples early in the text of practical problems such as the safety of a piece of engineering equipment or the inevitability of wrong conclusions in seemingly accurate medical tests for AIDS and cancer.;College or university bookstores may order five or more copies at a special student price which is available upon request from Marcel Dekker, Inc.
Probability Theory
Author: Achim Klenke
Publisher: Springer Science & Business Media
ISBN: 1848000480
Category : Mathematics
Languages : en
Pages : 621
Book Description
Aimed primarily at graduate students and researchers, this text is a comprehensive course in modern probability theory and its measure-theoretical foundations. It covers a wide variety of topics, many of which are not usually found in introductory textbooks. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in the world of probability theory. In addition, plenty of figures, computer simulations, biographic details of key mathematicians, and a wealth of examples support and enliven the presentation.
Publisher: Springer Science & Business Media
ISBN: 1848000480
Category : Mathematics
Languages : en
Pages : 621
Book Description
Aimed primarily at graduate students and researchers, this text is a comprehensive course in modern probability theory and its measure-theoretical foundations. It covers a wide variety of topics, many of which are not usually found in introductory textbooks. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in the world of probability theory. In addition, plenty of figures, computer simulations, biographic details of key mathematicians, and a wealth of examples support and enliven the presentation.
Probability Theory I
Author: M. Loeve
Publisher: Springer Science & Business Media
ISBN: 9780387902104
Category : Mathematics
Languages : en
Pages : 452
Book Description
This fourth edition contains several additions. The main ones con cern three closely related topics: Brownian motion, functional limit distributions, and random walks. Besides the power and ingenuity of their methods and the depth and beauty of their results, their importance is fast growing in Analysis as well as in theoretical and applied Proba bility. These additions increased the book to an unwieldy size and it had to be split into two volumes. About half of the first volume is devoted to an elementary introduc tion, then to mathematical foundations and basic probability concepts and tools. The second half is devoted to a detailed study of Independ ence which played and continues to playa central role both by itself and as a catalyst. The main additions consist of a section on convergence of probabilities on metric spaces and a chapter whose first section on domains of attrac tion completes the study of the Central limit problem, while the second one is devoted to random walks. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated. The main addition consists of a chapter on Brownian motion and limit distributions.
Publisher: Springer Science & Business Media
ISBN: 9780387902104
Category : Mathematics
Languages : en
Pages : 452
Book Description
This fourth edition contains several additions. The main ones con cern three closely related topics: Brownian motion, functional limit distributions, and random walks. Besides the power and ingenuity of their methods and the depth and beauty of their results, their importance is fast growing in Analysis as well as in theoretical and applied Proba bility. These additions increased the book to an unwieldy size and it had to be split into two volumes. About half of the first volume is devoted to an elementary introduc tion, then to mathematical foundations and basic probability concepts and tools. The second half is devoted to a detailed study of Independ ence which played and continues to playa central role both by itself and as a catalyst. The main additions consist of a section on convergence of probabilities on metric spaces and a chapter whose first section on domains of attrac tion completes the study of the Central limit problem, while the second one is devoted to random walks. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated. The main addition consists of a chapter on Brownian motion and limit distributions.
Introduction to Probability Models
Author: Sheldon M. Ross
Publisher: Academic Press
ISBN: 0123756871
Category : Mathematics
Languages : en
Pages : 801
Book Description
Introduction to Probability Models, Tenth Edition, provides an introduction to elementary probability theory and stochastic processes. There are two approaches to the study of probability theory. One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text. The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students. This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes. New to this Edition: - 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains - Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams - Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bank - Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: - Superior writing style - Excellent exercises and examples covering the wide breadth of coverage of probability topics - Real-world applications in engineering, science, business and economics
Publisher: Academic Press
ISBN: 0123756871
Category : Mathematics
Languages : en
Pages : 801
Book Description
Introduction to Probability Models, Tenth Edition, provides an introduction to elementary probability theory and stochastic processes. There are two approaches to the study of probability theory. One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text. The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students. This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes. New to this Edition: - 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains - Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams - Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bank - Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: - Superior writing style - Excellent exercises and examples covering the wide breadth of coverage of probability topics - Real-world applications in engineering, science, business and economics