Author: Dominique Bechmann
Publisher: Springer
ISBN: 3030267563
Category : Computers
Languages : en
Pages : 406
Book Description
This book constitutes thoroughly revised and selected papers from the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2018, held in Funchal-Madeira, Portugal, in January 2018. The 18 thoroughly revised and extended papers presented in this volume were carefully reviewed and selected from 317 submissions. The papers contribute to the understanding of relevant trends of current research on computer graphics; human computer interaction; information visualization; computer vision.
Computer Vision, Imaging and Computer Graphics Theory and Applications
Computer Vision, Imaging and Computer Graphics: Theory and Applications
Author: AlpeshKumar Ranchordas
Publisher: Springer Science & Business Media
ISBN: 3642118399
Category : Computers
Languages : en
Pages : 376
Book Description
This book includes extended versions of the selected papers from VISIGRAPP 2009, the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, which was held in Lisbon, Portugal, during February 5–8, 2009 and organized by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC). VISIGRAPP comprises three component conferences, namely, the International Conference on Computer Vision Theory and Applications (VISAPP), the International Conference on Computer Graphics Theory and Applications (GRAPP), and the International Conference on Imaging Theory and Applications (IMAGAPP). VISIGRAPP received a total of 422 paper submissions from more than 50 co- tries. From these, and after a rigorous double-blind evaluation method, 72 papers were published as full papers. These figures show that this conference is now an - tablished venue for researchers in the broad fields of computer vision, computer graphics and image analysis. From the full papers, 25 were selected for inclusion in this book. The selection process was based on the scores assigned by the Program Committee reviewers as well as the Session Chairs. After selection, the papers were further revised and extended by the authors. Our gratitude goes to all contributors and referees, without whom this book would not have been possible.
Publisher: Springer Science & Business Media
ISBN: 3642118399
Category : Computers
Languages : en
Pages : 376
Book Description
This book includes extended versions of the selected papers from VISIGRAPP 2009, the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, which was held in Lisbon, Portugal, during February 5–8, 2009 and organized by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC). VISIGRAPP comprises three component conferences, namely, the International Conference on Computer Vision Theory and Applications (VISAPP), the International Conference on Computer Graphics Theory and Applications (GRAPP), and the International Conference on Imaging Theory and Applications (IMAGAPP). VISIGRAPP received a total of 422 paper submissions from more than 50 co- tries. From these, and after a rigorous double-blind evaluation method, 72 papers were published as full papers. These figures show that this conference is now an - tablished venue for researchers in the broad fields of computer vision, computer graphics and image analysis. From the full papers, 25 were selected for inclusion in this book. The selection process was based on the scores assigned by the Program Committee reviewers as well as the Session Chairs. After selection, the papers were further revised and extended by the authors. Our gratitude goes to all contributors and referees, without whom this book would not have been possible.
Computer Vision, Imaging and Computer Graphics Theory and Applications
Author: José Braz
Publisher: Springer
ISBN: 9783319299709
Category : Computers
Languages : en
Pages : 0
Book Description
This book constitutes thoroughly revised and selected papers from the 10th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2015, held in Berlin, Germany, in March 2015. VISIGRAPP comprises GRAPP, International Conference on Computer Graphics Theory and Applications; IVAPP, International Conference on Information Visualization Theory and Applications; and VISAPP, International Conference on Computer Vision Theory and Applications. The 23 thoroughly revised and extended papers presented in this volume were carefully reviewed and selected from 529 submissions. The book also contains one invited talk in full-paper length. The regular papers were organized in topical sections named: computer graphics theory and applications; information visualization theory and applications; and computer vision theory and applications.
Publisher: Springer
ISBN: 9783319299709
Category : Computers
Languages : en
Pages : 0
Book Description
This book constitutes thoroughly revised and selected papers from the 10th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2015, held in Berlin, Germany, in March 2015. VISIGRAPP comprises GRAPP, International Conference on Computer Graphics Theory and Applications; IVAPP, International Conference on Information Visualization Theory and Applications; and VISAPP, International Conference on Computer Vision Theory and Applications. The 23 thoroughly revised and extended papers presented in this volume were carefully reviewed and selected from 529 submissions. The book also contains one invited talk in full-paper length. The regular papers were organized in topical sections named: computer graphics theory and applications; information visualization theory and applications; and computer vision theory and applications.
Computer Vision, Imaging and Computer Graphics Theory and Applications
Author: A. Augusto de Sousa
Publisher: Springer Nature
ISBN: 3031667433
Category :
Languages : en
Pages : 419
Book Description
Publisher: Springer Nature
ISBN: 3031667433
Category :
Languages : en
Pages : 419
Book Description
Machine Learning in Computer Vision
Author: Nicu Sebe
Publisher: Springer Science & Business Media
ISBN: 1402032757
Category : Computers
Languages : en
Pages : 253
Book Description
The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
Publisher: Springer Science & Business Media
ISBN: 1402032757
Category : Computers
Languages : en
Pages : 253
Book Description
The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
Computational Photography
Author: Rastislav Lukac
Publisher: CRC Press
ISBN: 1439817502
Category : Computers
Languages : en
Pages : 565
Book Description
Computational photography refers broadly to imaging techniques that enhance or extend the capabilities of digital photography. This new and rapidly developing research field has evolved from computer vision, image processing, computer graphics and applied optics—and numerous commercial products capitalizing on its principles have already appeared in diverse market applications, due to the gradual migration of computational algorithms from computers to imaging devices and software. Computational Photography: Methods and Applications provides a strong, fundamental understanding of theory and methods, and a foundation upon which to build solutions for many of today's most interesting and challenging computational imaging problems. Elucidating cutting-edge advances and applications in digital imaging, camera image processing, and computational photography, with a focus on related research challenges, this book: Describes single capture image fusion technology for consumer digital cameras Discusses the steps in a camera image processing pipeline, such as visual data compression, color correction and enhancement, denoising, demosaicking, super-resolution reconstruction, deblurring, and high dynamic range imaging Covers shadow detection for surveillance applications, camera-driven document rectification, bilateral filtering and its applications, and painterly rendering of digital images Presents machine-learning methods for automatic image colorization and digital face beautification Explores light field acquisition and processing, space-time light field rendering, and dynamic view synthesis with an array of cameras Because of the urgent challenges associated with emerging digital camera applications, image processing methods for computational photography are of paramount importance to research and development in the imaging community. Presenting the work of leading experts, and edited by a renowned authority in digital color imaging and camera image processing, this book considers the rapid developments in this area and addresses very particular research and application problems. It is ideal as a stand-alone professional reference for design and implementation of digital image and video processing tasks, and it can also be used to support graduate courses in computer vision, digital imaging, visual data processing, and computer graphics, among others.
Publisher: CRC Press
ISBN: 1439817502
Category : Computers
Languages : en
Pages : 565
Book Description
Computational photography refers broadly to imaging techniques that enhance or extend the capabilities of digital photography. This new and rapidly developing research field has evolved from computer vision, image processing, computer graphics and applied optics—and numerous commercial products capitalizing on its principles have already appeared in diverse market applications, due to the gradual migration of computational algorithms from computers to imaging devices and software. Computational Photography: Methods and Applications provides a strong, fundamental understanding of theory and methods, and a foundation upon which to build solutions for many of today's most interesting and challenging computational imaging problems. Elucidating cutting-edge advances and applications in digital imaging, camera image processing, and computational photography, with a focus on related research challenges, this book: Describes single capture image fusion technology for consumer digital cameras Discusses the steps in a camera image processing pipeline, such as visual data compression, color correction and enhancement, denoising, demosaicking, super-resolution reconstruction, deblurring, and high dynamic range imaging Covers shadow detection for surveillance applications, camera-driven document rectification, bilateral filtering and its applications, and painterly rendering of digital images Presents machine-learning methods for automatic image colorization and digital face beautification Explores light field acquisition and processing, space-time light field rendering, and dynamic view synthesis with an array of cameras Because of the urgent challenges associated with emerging digital camera applications, image processing methods for computational photography are of paramount importance to research and development in the imaging community. Presenting the work of leading experts, and edited by a renowned authority in digital color imaging and camera image processing, this book considers the rapid developments in this area and addresses very particular research and application problems. It is ideal as a stand-alone professional reference for design and implementation of digital image and video processing tasks, and it can also be used to support graduate courses in computer vision, digital imaging, visual data processing, and computer graphics, among others.
Computer Vision, Imaging and Computer Graphics - Theory and Applications
Author: Gabriela Csurka
Publisher: Springer
ISBN: 364238241X
Category : Computers
Languages : en
Pages : 459
Book Description
This book constitutes the refereed proceedings of the International Conference, VISIGRAPP 2012, the Joint Conference on Computer Vision Theory and Applications (VISAPP), on Computer Graphics Theory and Applications (GRAPP), and on Information Visualization Theory and Applications (IVAPP), held in Rome, Italy, in February 2012. The 28 revised full papers presented together with one invited paper were carefully reviewed and selected from 483 submissions. The papers are organized in topical sections on computer graphics theory and applications; information visualization theory and applications; computer vision theory and applications.
Publisher: Springer
ISBN: 364238241X
Category : Computers
Languages : en
Pages : 459
Book Description
This book constitutes the refereed proceedings of the International Conference, VISIGRAPP 2012, the Joint Conference on Computer Vision Theory and Applications (VISAPP), on Computer Graphics Theory and Applications (GRAPP), and on Information Visualization Theory and Applications (IVAPP), held in Rome, Italy, in February 2012. The 28 revised full papers presented together with one invited paper were carefully reviewed and selected from 483 submissions. The papers are organized in topical sections on computer graphics theory and applications; information visualization theory and applications; computer vision theory and applications.
Front-End Vision and Multi-Scale Image Analysis
Author: Bart M. Haar Romeny
Publisher: Springer Science & Business Media
ISBN: 140208840X
Category : Computers
Languages : en
Pages : 470
Book Description
Many approaches have been proposed to solve the problem of finding the optic flow field of an image sequence. Three major classes of optic flow computation techniques can discriminated (see for a good overview Beauchemin and Barron IBeauchemin19951): gradient based (or differential) methods; phase based (or frequency domain) methods; correlation based (or area) methods; feature point (or sparse data) tracking methods; In this chapter we compute the optic flow as a dense optic flow field with a multi scale differential method. The method, originally proposed by Florack and Nielsen [Florack1998a] is known as the Multiscale Optic Flow Constrain Equation (MOFCE). This is a scale space version of the well known computer vision implementation of the optic flow constraint equation, as originally proposed by Horn and Schunck [Horn1981]. This scale space variation, as usual, consists of the introduction of the aperture of the observation in the process. The application to stereo has been described by Maas et al. [Maas 1995a, Maas 1996a]. Of course, difficulties arise when structure emerges or disappears, such as with occlusion, cloud formation etc. Then knowledge is needed about the processes and objects involved. In this chapter we focus on the scale space approach to the local measurement of optic flow, as we may expect the visual front end to do. 17. 2 Motion detection with pairs of receptive fields As a biologically motivated start, we begin with discussing some neurophysiological findings in the visual system with respect to motion detection.
Publisher: Springer Science & Business Media
ISBN: 140208840X
Category : Computers
Languages : en
Pages : 470
Book Description
Many approaches have been proposed to solve the problem of finding the optic flow field of an image sequence. Three major classes of optic flow computation techniques can discriminated (see for a good overview Beauchemin and Barron IBeauchemin19951): gradient based (or differential) methods; phase based (or frequency domain) methods; correlation based (or area) methods; feature point (or sparse data) tracking methods; In this chapter we compute the optic flow as a dense optic flow field with a multi scale differential method. The method, originally proposed by Florack and Nielsen [Florack1998a] is known as the Multiscale Optic Flow Constrain Equation (MOFCE). This is a scale space version of the well known computer vision implementation of the optic flow constraint equation, as originally proposed by Horn and Schunck [Horn1981]. This scale space variation, as usual, consists of the introduction of the aperture of the observation in the process. The application to stereo has been described by Maas et al. [Maas 1995a, Maas 1996a]. Of course, difficulties arise when structure emerges or disappears, such as with occlusion, cloud formation etc. Then knowledge is needed about the processes and objects involved. In this chapter we focus on the scale space approach to the local measurement of optic flow, as we may expect the visual front end to do. 17. 2 Motion detection with pairs of receptive fields As a biologically motivated start, we begin with discussing some neurophysiological findings in the visual system with respect to motion detection.
Color Theory and Modeling for Computer Graphics, Visualization, and Multimedia Applications
Author: Haim Levkowitz
Publisher: Springer
ISBN: 0585284288
Category : Computers
Languages : en
Pages : 230
Book Description
Color Theory and Modeling for Computer Graphics, Visualization, and Multimedia Applications deals with color vision and visual computing. This book provides an overview of the human visual system with an emphasis on color vision and perception. The book then goes on to discuss how human color vision and perception are applied in several applications using computer-generated displays, such as computer graphics and information and data visualization. Color Theory and Modeling for Computer Graphics, Visualization, and Multimedia Applications is suitable as a secondary text for a graduate-level course on computer graphics, computer imaging, or multimedia computing and as a reference for researchers and practitioners developing computer graphics and multimedia applications.
Publisher: Springer
ISBN: 0585284288
Category : Computers
Languages : en
Pages : 230
Book Description
Color Theory and Modeling for Computer Graphics, Visualization, and Multimedia Applications deals with color vision and visual computing. This book provides an overview of the human visual system with an emphasis on color vision and perception. The book then goes on to discuss how human color vision and perception are applied in several applications using computer-generated displays, such as computer graphics and information and data visualization. Color Theory and Modeling for Computer Graphics, Visualization, and Multimedia Applications is suitable as a secondary text for a graduate-level course on computer graphics, computer imaging, or multimedia computing and as a reference for researchers and practitioners developing computer graphics and multimedia applications.
Image Processing and Analysis with Graphs
Author: Olivier Lezoray
Publisher: CRC Press
ISBN: 1439855080
Category : Computers
Languages : en
Pages : 562
Book Description
Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—which are suitable to represent any discrete data by modeling neighborhood relationships—have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.
Publisher: CRC Press
ISBN: 1439855080
Category : Computers
Languages : en
Pages : 562
Book Description
Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—which are suitable to represent any discrete data by modeling neighborhood relationships—have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.