Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations

Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations PDF Author: Uri M. Ascher
Publisher: SIAM
ISBN: 0898714125
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
This book contains all the material necessary for a course on the numerical solution of differential equations.

Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations

Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations PDF Author: Uri M. Ascher
Publisher: SIAM
ISBN: 0898714125
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
This book contains all the material necessary for a course on the numerical solution of differential equations.

Computer Solution of Ordinary Differential Equations

Computer Solution of Ordinary Differential Equations PDF Author: Lawrence F. Shampine
Publisher: W.H. Freeman
ISBN:
Category : Differential equations
Languages : en
Pages : 344

Get Book Here

Book Description


Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations PDF Author: Mitsuhiro T. Nakao
Publisher: Springer Nature
ISBN: 9811376697
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a “theoretical” proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form -∆u=f(x,u,∇u) with Dirichlet boundary conditions. Here, by “verified computation” is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors’ methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.

Handbook of Ordinary Differential Equations

Handbook of Ordinary Differential Equations PDF Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1351643916
Category : Mathematics
Languages : en
Pages : 1584

Get Book Here

Book Description
The Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, is an exceptional and complete reference for scientists and engineers as it contains over 7,000 ordinary differential equations with solutions. This book contains more equations and methods used in the field than any other book currently available. Included in the handbook are exact, asymptotic, approximate analytical, numerical symbolic and qualitative methods that are used for solving and analyzing linear and nonlinear equations. The authors also present formulas for effective construction of solutions and many different equations arising in various applications like heat transfer, elasticity, hydrodynamics and more. This extensive handbook is the perfect resource for engineers and scientists searching for an exhaustive reservoir of information on ordinary differential equations.

Solving Ordinary Differential Equations I

Solving Ordinary Differential Equations I PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 354078862X
Category : Mathematics
Languages : en
Pages : 541

Get Book Here

Book Description
This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory, and the second chapter includes a modern treatment of Runge-Kutta and extrapolation methods. Chapter three begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. The reader will benefit from many illustrations, a historical and didactic approach, and computer programs which help him/her learn to solve all kinds of ordinary differential equations. This new edition has been rewritten and new material has been included.

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations PDF Author: Uri M. Ascher
Publisher: SIAM
ISBN: 9781611971231
Category : Mathematics
Languages : en
Pages : 620

Get Book Here

Book Description
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Handbook of Exact Solutions for Ordinary Differential Equations

Handbook of Exact Solutions for Ordinary Differential Equations PDF Author: Valentin F. Zaitsev
Publisher: CRC Press
ISBN: 1420035339
Category : Mathematics
Languages : en
Pages : 815

Get Book Here

Book Description
Exact solutions of differential equations continue to play an important role in the understanding of many phenomena and processes throughout the natural sciences in that they can verify the correctness of or estimate errors in solutions reached by numerical, asymptotic, and approximate analytical methods. The new edition of this bestselling handboo

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations PDF Author: Kendall Atkinson
Publisher: John Wiley & Sons
ISBN: 1118164520
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Ordinary Differential Equations

Ordinary Differential Equations PDF Author: Charles E. Roberts
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 432

Get Book Here

Book Description


Scientific Computing with Ordinary Differential Equations

Scientific Computing with Ordinary Differential Equations PDF Author: Peter Deuflhard
Publisher: Springer Science & Business Media
ISBN: 0387215824
Category : Mathematics
Languages : en
Pages : 498

Get Book Here

Book Description
Well-known authors; Includes topics and results that have previously not been covered in a book; Uses many interesting examples from science and engineering; Contains numerous homework exercises; Scientific computing is a hot and topical area