Author: Benoit Roux
Publisher: World Scientific
ISBN: 9811232776
Category : Science
Languages : en
Pages : 209
Book Description
This textbook originated from the course 'Simulation, Modeling, and Computations in Biophysics' that I have taught at the University of Chicago since 2011. The students typically came from a wide range of backgrounds, including biology, physics, chemistry, biochemistry, and mathematics, and the course was intentionally adapted for senior undergraduate students and graduate students. This is not a highly technical book dedicated to specialists. The objective is to provide a broad survey from the physical description of a complex molecular system at the most fundamental level, to the type of phenomenological models commonly used to represent the function of large biological macromolecular machines.The key conceptual elements serving as building blocks in the formulation of different levels of approximations are introduced along the way, aiming to clarify as much as possible how they are interrelated. The only assumption is a basic familiarity with simple mathematics (calculus and integrals, ordinary differential equations, matrix linear algebra, and Fourier-Laplace transforms).
Computational Modeling And Simulations Of Biomolecular Systems
Author: Benoit Roux
Publisher: World Scientific
ISBN: 9811232776
Category : Science
Languages : en
Pages : 209
Book Description
This textbook originated from the course 'Simulation, Modeling, and Computations in Biophysics' that I have taught at the University of Chicago since 2011. The students typically came from a wide range of backgrounds, including biology, physics, chemistry, biochemistry, and mathematics, and the course was intentionally adapted for senior undergraduate students and graduate students. This is not a highly technical book dedicated to specialists. The objective is to provide a broad survey from the physical description of a complex molecular system at the most fundamental level, to the type of phenomenological models commonly used to represent the function of large biological macromolecular machines.The key conceptual elements serving as building blocks in the formulation of different levels of approximations are introduced along the way, aiming to clarify as much as possible how they are interrelated. The only assumption is a basic familiarity with simple mathematics (calculus and integrals, ordinary differential equations, matrix linear algebra, and Fourier-Laplace transforms).
Publisher: World Scientific
ISBN: 9811232776
Category : Science
Languages : en
Pages : 209
Book Description
This textbook originated from the course 'Simulation, Modeling, and Computations in Biophysics' that I have taught at the University of Chicago since 2011. The students typically came from a wide range of backgrounds, including biology, physics, chemistry, biochemistry, and mathematics, and the course was intentionally adapted for senior undergraduate students and graduate students. This is not a highly technical book dedicated to specialists. The objective is to provide a broad survey from the physical description of a complex molecular system at the most fundamental level, to the type of phenomenological models commonly used to represent the function of large biological macromolecular machines.The key conceptual elements serving as building blocks in the formulation of different levels of approximations are introduced along the way, aiming to clarify as much as possible how they are interrelated. The only assumption is a basic familiarity with simple mathematics (calculus and integrals, ordinary differential equations, matrix linear algebra, and Fourier-Laplace transforms).
Computer Simulation of Biomolecular Systems
Author: W.F. van Gunsteren
Publisher: Springer Science & Business Media
ISBN: 9789072199256
Category : Science
Languages : en
Pages : 664
Book Description
This book is the third volume in this highly successful series. Since the first volume in 1989 and the second in 1993, many exciting developments have occurred in the development of simulation techniques and their application to key biological problems such as protein folding, protein structure prediction and structure-based design, and in how, by combining experimental and theoretical approaches, very large biological systems can be studied at the molecular level. This series attempts to capture that progress. Volume 3 includes contributions that highlight developments in methodology which enable longer and more realistic simulations (e.g. multiple time steps and variable reduction techniques), a study of force fields for proteins and new force field development, a novel approach to the description of molecular shape and the use of molecular shape descriptors, the study of condensed phase chemical reactions, the use of electrostatic techniques in the study of protonation, equilibria and flexible docking studies, structure refinement using experimental data (X-ray, NMR, neutron, infrared) and theoretical methods (solvation models, normal mode analysis, MD simulations, MC lattice dynamics, and knowledge-based potentials). There are several chapters that show progress in the development of methodologies for the study of folding processes, binding affinities, and the prediction of ligand-protein complexes. The chapters, contributed by experienced researchers, many of whom are leaders in their field of study, are organised to cover developments in: simulation methodology the treatment of electrostatics protein structure refinement the combined experimental and theoretical approaches to the study of very large biological systems applications and methodology involved in the study of protein folding applications and methodology associated with structure-based design.
Publisher: Springer Science & Business Media
ISBN: 9789072199256
Category : Science
Languages : en
Pages : 664
Book Description
This book is the third volume in this highly successful series. Since the first volume in 1989 and the second in 1993, many exciting developments have occurred in the development of simulation techniques and their application to key biological problems such as protein folding, protein structure prediction and structure-based design, and in how, by combining experimental and theoretical approaches, very large biological systems can be studied at the molecular level. This series attempts to capture that progress. Volume 3 includes contributions that highlight developments in methodology which enable longer and more realistic simulations (e.g. multiple time steps and variable reduction techniques), a study of force fields for proteins and new force field development, a novel approach to the description of molecular shape and the use of molecular shape descriptors, the study of condensed phase chemical reactions, the use of electrostatic techniques in the study of protonation, equilibria and flexible docking studies, structure refinement using experimental data (X-ray, NMR, neutron, infrared) and theoretical methods (solvation models, normal mode analysis, MD simulations, MC lattice dynamics, and knowledge-based potentials). There are several chapters that show progress in the development of methodologies for the study of folding processes, binding affinities, and the prediction of ligand-protein complexes. The chapters, contributed by experienced researchers, many of whom are leaders in their field of study, are organised to cover developments in: simulation methodology the treatment of electrostatics protein structure refinement the combined experimental and theoretical approaches to the study of very large biological systems applications and methodology involved in the study of protein folding applications and methodology associated with structure-based design.
Computational Modeling of Biological Systems
Author: Nikolay V Dokholyan
Publisher: Springer Science & Business Media
ISBN: 1461421454
Category : Science
Languages : en
Pages : 360
Book Description
Computational modeling is emerging as a powerful new approach to study and manipulate biological systems. Multiple methods have been developed to model, visualize, and rationally alter systems at various length scales, starting from molecular modeling and design at atomic resolution to cellular pathways modeling and analysis. Higher time and length scale processes, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. This book provides an overview of the established computational methods used for modeling biologically and medically relevant systems.
Publisher: Springer Science & Business Media
ISBN: 1461421454
Category : Science
Languages : en
Pages : 360
Book Description
Computational modeling is emerging as a powerful new approach to study and manipulate biological systems. Multiple methods have been developed to model, visualize, and rationally alter systems at various length scales, starting from molecular modeling and design at atomic resolution to cellular pathways modeling and analysis. Higher time and length scale processes, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. This book provides an overview of the established computational methods used for modeling biologically and medically relevant systems.
Innovations in Biomolecular Modeling and Simulations
Author: Tamar Schlick
Publisher: Royal Society of Chemistry
ISBN: 1849735042
Category : Science
Languages : en
Pages : 381
Book Description
The chemical and biological sciences face unprecedented opportunities in the 21st century. A confluence of factors from parallel universes - advances in experimental techniques in biomolecular structure determination, progress in theoretical modeling and simulation for large biological systems, and breakthroughs in computer technology - has opened new avenues of opportunity as never before. Now, experimental data can be interpreted and further analysed by modeling, and predictions from any approach can be tested and advanced through companion methodologies and technologies. This two volume set describes innovations in biomolecular modeling and simulation, in both the algorithmic and application fronts. With contributions from experts in the field, the books describe progress and innovation in areas including: simulation algorithms for dynamics and enhanced configurational sampling, force field development, implicit solvation models, coarse-grained models, quantum-mechanical simulations, protein folding, DNA polymerase mechanisms, nucleic acid complexes and simulations, RNA structure analysis and design and other important topics in structural biology modeling. The books are aimed at graduate students and experts in structural biology and chemistry and the emphasis is on reporting innovative new approaches rather than providing comprehensive reviews on each subject.
Publisher: Royal Society of Chemistry
ISBN: 1849735042
Category : Science
Languages : en
Pages : 381
Book Description
The chemical and biological sciences face unprecedented opportunities in the 21st century. A confluence of factors from parallel universes - advances in experimental techniques in biomolecular structure determination, progress in theoretical modeling and simulation for large biological systems, and breakthroughs in computer technology - has opened new avenues of opportunity as never before. Now, experimental data can be interpreted and further analysed by modeling, and predictions from any approach can be tested and advanced through companion methodologies and technologies. This two volume set describes innovations in biomolecular modeling and simulation, in both the algorithmic and application fronts. With contributions from experts in the field, the books describe progress and innovation in areas including: simulation algorithms for dynamics and enhanced configurational sampling, force field development, implicit solvation models, coarse-grained models, quantum-mechanical simulations, protein folding, DNA polymerase mechanisms, nucleic acid complexes and simulations, RNA structure analysis and design and other important topics in structural biology modeling. The books are aimed at graduate students and experts in structural biology and chemistry and the emphasis is on reporting innovative new approaches rather than providing comprehensive reviews on each subject.
Biomolecular and Bioanalytical Techniques
Author: Vasudevan Ramesh
Publisher: John Wiley & Sons
ISBN: 1119483964
Category : Science
Languages : en
Pages : 576
Book Description
An essential guide to biomolecular and bioanalytical techniques and their applications Biomolecular and Bioanalytical Techniques offers an introduction to, and a basic understanding of, a wide range of biophysical techniques. The text takes an interdisciplinary approach with contributions from a panel of distinguished experts. With a focus on research, the text comprehensively covers a broad selection of topics drawn from contemporary research in the fields of chemistry and biology. Each of the internationally reputed authors has contributed a single chapter on a specific technique. The chapters cover the specific technique’s background, theory, principles, technique, methodology, protocol and applications. The text explores the use of a variety of analytical tools to characterise biological samples. The contributors explain how to identify and quantify biochemically important molecules, including small molecules as well as biological macromolecules such as enzymes, antibodies, proteins, peptides and nucleic acids. This book is filled with essential knowledge and explores the skills needed to carry out the research and development roles in academic and industrial laboratories. A technique-focused book that bridges the gap between an introductory text and a book on advanced research methods Provides the necessary background and skills needed to advance the research methods Features a structured approach within each chapter Demonstrates an interdisciplinary approach that serves to develop independent thinking Written for students in chemistry, biological, medical, pharmaceutical, forensic and biophysical sciences, Biomolecular and Bioanalytical Techniques is an in-depth review of the most current biomolecular and bioanalytical techniques in the field.
Publisher: John Wiley & Sons
ISBN: 1119483964
Category : Science
Languages : en
Pages : 576
Book Description
An essential guide to biomolecular and bioanalytical techniques and their applications Biomolecular and Bioanalytical Techniques offers an introduction to, and a basic understanding of, a wide range of biophysical techniques. The text takes an interdisciplinary approach with contributions from a panel of distinguished experts. With a focus on research, the text comprehensively covers a broad selection of topics drawn from contemporary research in the fields of chemistry and biology. Each of the internationally reputed authors has contributed a single chapter on a specific technique. The chapters cover the specific technique’s background, theory, principles, technique, methodology, protocol and applications. The text explores the use of a variety of analytical tools to characterise biological samples. The contributors explain how to identify and quantify biochemically important molecules, including small molecules as well as biological macromolecules such as enzymes, antibodies, proteins, peptides and nucleic acids. This book is filled with essential knowledge and explores the skills needed to carry out the research and development roles in academic and industrial laboratories. A technique-focused book that bridges the gap between an introductory text and a book on advanced research methods Provides the necessary background and skills needed to advance the research methods Features a structured approach within each chapter Demonstrates an interdisciplinary approach that serves to develop independent thinking Written for students in chemistry, biological, medical, pharmaceutical, forensic and biophysical sciences, Biomolecular and Bioanalytical Techniques is an in-depth review of the most current biomolecular and bioanalytical techniques in the field.
Biological Modeling and Simulation
Author: Russell Schwartz
Publisher: MIT Press
ISBN: 0262195844
Category : Science
Languages : en
Pages : 403
Book Description
A practice-oriented survey of techniques for computational modeling and simulation suitable for a broad range of biological problems. There are many excellent computational biology resources now available for learning about methods that have been developed to address specific biological systems, but comparatively little attention has been paid to training aspiring computational biologists to handle new and unanticipated problems. This text is intended to fill that gap by teaching students how to reason about developing formal mathematical models of biological systems that are amenable to computational analysis. It collects in one place a selection of broadly useful models, algorithms, and theoretical analysis tools normally found scattered among many other disciplines. It thereby gives the aspiring student a bag of tricks that will serve him or her well in modeling problems drawn from numerous subfields of biology. These techniques are taught from the perspective of what the practitioner needs to know to use them effectively, supplemented with references for further reading on more advanced use of each method covered. The text, which grew out of a class taught at Carnegie Mellon University, covers models for optimization, simulation and sampling, and parameter tuning. These topics provide a general framework for learning how to formulate mathematical models of biological systems, what techniques are available to work with these models, and how to fit the models to particular systems. Their application is illustrated by many examples drawn from a variety of biological disciplines and several extended case studies that show how the methods described have been applied to real problems in biology.
Publisher: MIT Press
ISBN: 0262195844
Category : Science
Languages : en
Pages : 403
Book Description
A practice-oriented survey of techniques for computational modeling and simulation suitable for a broad range of biological problems. There are many excellent computational biology resources now available for learning about methods that have been developed to address specific biological systems, but comparatively little attention has been paid to training aspiring computational biologists to handle new and unanticipated problems. This text is intended to fill that gap by teaching students how to reason about developing formal mathematical models of biological systems that are amenable to computational analysis. It collects in one place a selection of broadly useful models, algorithms, and theoretical analysis tools normally found scattered among many other disciplines. It thereby gives the aspiring student a bag of tricks that will serve him or her well in modeling problems drawn from numerous subfields of biology. These techniques are taught from the perspective of what the practitioner needs to know to use them effectively, supplemented with references for further reading on more advanced use of each method covered. The text, which grew out of a class taught at Carnegie Mellon University, covers models for optimization, simulation and sampling, and parameter tuning. These topics provide a general framework for learning how to formulate mathematical models of biological systems, what techniques are available to work with these models, and how to fit the models to particular systems. Their application is illustrated by many examples drawn from a variety of biological disciplines and several extended case studies that show how the methods described have been applied to real problems in biology.
Molecular Modeling and Simulation
Author: Tamar Schlick
Publisher: Springer Science & Business Media
ISBN: 0387224645
Category : Science
Languages : en
Pages : 669
Book Description
Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text
Publisher: Springer Science & Business Media
ISBN: 0387224645
Category : Science
Languages : en
Pages : 669
Book Description
Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text
Biomolecular Simulations
Author: Luca Monticelli
Publisher: Humana Press
ISBN: 9781627030168
Category : Science
Languages : en
Pages : 0
Book Description
Over the past 40 years the field of molecular simulations has evolved from picosecond studies of isolated macromolecules in vacuum to studies of complex, chemically heterogeneous biological systems consisting of millions of atoms, with the simulation time scales spanning up to milliseconds. In Biomolecular Simulations: Methods and Protocols, expert researchers illustrate many of the methods commonly used in molecular modelling of biological systems, including methods for electronic structure calculations, classical molecular dynamics simulations and coarse-grained techniques. A selection of advanced techniques and recent methodological developments, which rarely find coverage in traditional textbooks, is also introduced. Written in the highly successful Methods in Molecular Biology series format, chapters include general introductions to well-established computational methodologies, applications to real-world biological systems, as well as practical tips and general protocols on carrying out biomolecular simulations. Special emphasis is placed on simulations of proteins, lipids, nucleic acids, and carbohydrates. Authoritative and practical, Biomolecular Simulations: Methods and Protocols seeks to aid scientists in further simulation studies of biological systems.
Publisher: Humana Press
ISBN: 9781627030168
Category : Science
Languages : en
Pages : 0
Book Description
Over the past 40 years the field of molecular simulations has evolved from picosecond studies of isolated macromolecules in vacuum to studies of complex, chemically heterogeneous biological systems consisting of millions of atoms, with the simulation time scales spanning up to milliseconds. In Biomolecular Simulations: Methods and Protocols, expert researchers illustrate many of the methods commonly used in molecular modelling of biological systems, including methods for electronic structure calculations, classical molecular dynamics simulations and coarse-grained techniques. A selection of advanced techniques and recent methodological developments, which rarely find coverage in traditional textbooks, is also introduced. Written in the highly successful Methods in Molecular Biology series format, chapters include general introductions to well-established computational methodologies, applications to real-world biological systems, as well as practical tips and general protocols on carrying out biomolecular simulations. Special emphasis is placed on simulations of proteins, lipids, nucleic acids, and carbohydrates. Authoritative and practical, Biomolecular Simulations: Methods and Protocols seeks to aid scientists in further simulation studies of biological systems.
A Practical Introduction to the Simulation of Molecular Systems
Author: Martin J. Field
Publisher: Cambridge University Press
ISBN: 1139465813
Category : Science
Languages : en
Pages : 294
Book Description
Molecular simulation is a powerful tool in materials science, physics, chemistry and biomolecular fields. This updated edition provides a pragmatic introduction to a wide range of techniques for the simulation of molecular systems at the atomic level. The first part concentrates on methods for calculating the potential energy of a molecular system, with new chapters on quantum chemical, molecular mechanical and hybrid potential techniques. The second part describes methods examining conformational, dynamical and thermodynamical properties of systems, covering techniques including geometry-optimization, normal-mode analysis, molecular dynamics, and Monte Carlo simulation. Using Python, the second edition includes numerous examples and program modules for each simulation technique, allowing the reader to perform the calculations and appreciate the inherent difficulties involved in each. This is a valuable resource for researchers and graduate students wanting to know how to use atomic-scale molecular simulations. Supplementary material, including the program library and technical information, available through www.cambridge.org/9780521852524.
Publisher: Cambridge University Press
ISBN: 1139465813
Category : Science
Languages : en
Pages : 294
Book Description
Molecular simulation is a powerful tool in materials science, physics, chemistry and biomolecular fields. This updated edition provides a pragmatic introduction to a wide range of techniques for the simulation of molecular systems at the atomic level. The first part concentrates on methods for calculating the potential energy of a molecular system, with new chapters on quantum chemical, molecular mechanical and hybrid potential techniques. The second part describes methods examining conformational, dynamical and thermodynamical properties of systems, covering techniques including geometry-optimization, normal-mode analysis, molecular dynamics, and Monte Carlo simulation. Using Python, the second edition includes numerous examples and program modules for each simulation technique, allowing the reader to perform the calculations and appreciate the inherent difficulties involved in each. This is a valuable resource for researchers and graduate students wanting to know how to use atomic-scale molecular simulations. Supplementary material, including the program library and technical information, available through www.cambridge.org/9780521852524.
Foundations of Molecular Modeling and Simulation
Author: Edward J. Maginn
Publisher: Springer Nature
ISBN: 9813366397
Category : Science
Languages : en
Pages : 228
Book Description
This highly informative and carefully presented book comprises select proceedings of Foundation for Molecular Modelling and Simulation (FOMMS 2018). The contents are written by invited speakers centered on the theme Innovation for Complex Systems. It showcases new developments and applications of computational quantum chemistry, statistical mechanics, molecular simulation and theory, and continuum and engineering process simulation. This volume will serve as a useful reference to researchers, academicians and practitioners alike.
Publisher: Springer Nature
ISBN: 9813366397
Category : Science
Languages : en
Pages : 228
Book Description
This highly informative and carefully presented book comprises select proceedings of Foundation for Molecular Modelling and Simulation (FOMMS 2018). The contents are written by invited speakers centered on the theme Innovation for Complex Systems. It showcases new developments and applications of computational quantum chemistry, statistical mechanics, molecular simulation and theory, and continuum and engineering process simulation. This volume will serve as a useful reference to researchers, academicians and practitioners alike.