Author: Wenbo Zheng
Publisher: Elsevier
ISBN: 0443216185
Category : Computers
Languages : en
Pages : 278
Book Description
Computational Knowledge Vision: The First Footprints presents a novel, advanced framework which combines structuralized knowledge and visual models. In advanced image and visual perception studies, a visual model's understanding and reasoning ability often determines whether it works well in complex scenarios. This book presents state-of-the-art mainstream vision models for visual perception. As computer vision is one of the key gateways to artificial intelligence and a significant component of modern intelligent systems, this book delves into computer vision systems that are highly specialized and very limited in their ability to do visual reasoning and causal inference. Questions naturally arise in this arena, including (1) How can human knowledge be incorporated with visual models? (2) How does human knowledge promote the performance of visual models? To address these problems, this book proposes a new framework for computer vision–computational knowledge vision. - Presents a concept and basic framework of Computational Knowledge Vision that extends the knowledge engineering methodology to the computer vision field - Discusses neural networks, meta-learning, graphs, and Transformer models - Illustrates a basic framework for Computational Knowledge Vision whose essential techniques include structuralized knowledge, knowledge projection, and conditional feedback
Computational Knowledge Vision
Author: Wenbo Zheng
Publisher: Elsevier
ISBN: 0443216185
Category : Computers
Languages : en
Pages : 278
Book Description
Computational Knowledge Vision: The First Footprints presents a novel, advanced framework which combines structuralized knowledge and visual models. In advanced image and visual perception studies, a visual model's understanding and reasoning ability often determines whether it works well in complex scenarios. This book presents state-of-the-art mainstream vision models for visual perception. As computer vision is one of the key gateways to artificial intelligence and a significant component of modern intelligent systems, this book delves into computer vision systems that are highly specialized and very limited in their ability to do visual reasoning and causal inference. Questions naturally arise in this arena, including (1) How can human knowledge be incorporated with visual models? (2) How does human knowledge promote the performance of visual models? To address these problems, this book proposes a new framework for computer vision–computational knowledge vision. - Presents a concept and basic framework of Computational Knowledge Vision that extends the knowledge engineering methodology to the computer vision field - Discusses neural networks, meta-learning, graphs, and Transformer models - Illustrates a basic framework for Computational Knowledge Vision whose essential techniques include structuralized knowledge, knowledge projection, and conditional feedback
Publisher: Elsevier
ISBN: 0443216185
Category : Computers
Languages : en
Pages : 278
Book Description
Computational Knowledge Vision: The First Footprints presents a novel, advanced framework which combines structuralized knowledge and visual models. In advanced image and visual perception studies, a visual model's understanding and reasoning ability often determines whether it works well in complex scenarios. This book presents state-of-the-art mainstream vision models for visual perception. As computer vision is one of the key gateways to artificial intelligence and a significant component of modern intelligent systems, this book delves into computer vision systems that are highly specialized and very limited in their ability to do visual reasoning and causal inference. Questions naturally arise in this arena, including (1) How can human knowledge be incorporated with visual models? (2) How does human knowledge promote the performance of visual models? To address these problems, this book proposes a new framework for computer vision–computational knowledge vision. - Presents a concept and basic framework of Computational Knowledge Vision that extends the knowledge engineering methodology to the computer vision field - Discusses neural networks, meta-learning, graphs, and Transformer models - Illustrates a basic framework for Computational Knowledge Vision whose essential techniques include structuralized knowledge, knowledge projection, and conditional feedback
Machine Learning in Computer Vision
Author: Nicu Sebe
Publisher: Springer Science & Business Media
ISBN: 1402032757
Category : Computers
Languages : en
Pages : 253
Book Description
The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
Publisher: Springer Science & Business Media
ISBN: 1402032757
Category : Computers
Languages : en
Pages : 253
Book Description
The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
Computational Thinking
Author: Peter J. Denning
Publisher: MIT Press
ISBN: 0262353423
Category : Computers
Languages : en
Pages : 266
Book Description
This pocket-sized introduction to computational thinking and problem-solving traces its genealogy centuries before the digital computer. A few decades into the digital era, scientists discovered that thinking in terms of computation made possible an entirely new way of organizing scientific investigation. Eventually, every field had a computational branch: computational physics, computational biology, computational sociology. More recently, “computational thinking” has become part of the K–12 curriculum. But what is computational thinking? This volume in the MIT Press Essential Knowledge series offers an accessible overview—tracing a genealogy that begins centuries before digital computers and portraying computational thinking as the pioneers of computing have described it. The authors explain that computational thinking (CT) is not a set of concepts for programming; it is a way of thinking that is honed through practice: the mental skills for designing computations to do jobs for us, and for explaining and interpreting the world as a complex of information processes. Mathematically trained experts (known as “computers”) who performed complex calculations as teams engaged in CT long before electronic computers. In each chapter, the author identify different dimensions of today's highly developed CT: • Computational Methods • Computing Machines • Computing Education • Software Engineering • Computational Science • Design Along the way, they debunk inflated claims for CT and computation while making clear the power of CT in all its complexity and multiplicity.
Publisher: MIT Press
ISBN: 0262353423
Category : Computers
Languages : en
Pages : 266
Book Description
This pocket-sized introduction to computational thinking and problem-solving traces its genealogy centuries before the digital computer. A few decades into the digital era, scientists discovered that thinking in terms of computation made possible an entirely new way of organizing scientific investigation. Eventually, every field had a computational branch: computational physics, computational biology, computational sociology. More recently, “computational thinking” has become part of the K–12 curriculum. But what is computational thinking? This volume in the MIT Press Essential Knowledge series offers an accessible overview—tracing a genealogy that begins centuries before digital computers and portraying computational thinking as the pioneers of computing have described it. The authors explain that computational thinking (CT) is not a set of concepts for programming; it is a way of thinking that is honed through practice: the mental skills for designing computations to do jobs for us, and for explaining and interpreting the world as a complex of information processes. Mathematically trained experts (known as “computers”) who performed complex calculations as teams engaged in CT long before electronic computers. In each chapter, the author identify different dimensions of today's highly developed CT: • Computational Methods • Computing Machines • Computing Education • Software Engineering • Computational Science • Design Along the way, they debunk inflated claims for CT and computation while making clear the power of CT in all its complexity and multiplicity.
Vision
Author: David Marr
Publisher: MIT Press
ISBN: 0262514621
Category : Psychology
Languages : en
Pages : 429
Book Description
Available again, an influential book that offers a framework for understanding visual perception and considers fundamental questions about the brain and its functions. David Marr's posthumously published Vision (1982) influenced a generation of brain and cognitive scientists, inspiring many to enter the field. In Vision, Marr describes a general framework for understanding visual perception and touches on broader questions about how the brain and its functions can be studied and understood. Researchers from a range of brain and cognitive sciences have long valued Marr's creativity, intellectual power, and ability to integrate insights and data from neuroscience, psychology, and computation. This MIT Press edition makes Marr's influential work available to a new generation of students and scientists. In Marr's framework, the process of vision constructs a set of representations, starting from a description of the input image and culminating with a description of three-dimensional objects in the surrounding environment. A central theme, and one that has had far-reaching influence in both neuroscience and cognitive science, is the notion of different levels of analysis—in Marr's framework, the computational level, the algorithmic level, and the hardware implementation level. Now, thirty years later, the main problems that occupied Marr remain fundamental open problems in the study of perception. Vision provides inspiration for the continuing efforts to integrate knowledge from cognition and computation to understand vision and the brain.
Publisher: MIT Press
ISBN: 0262514621
Category : Psychology
Languages : en
Pages : 429
Book Description
Available again, an influential book that offers a framework for understanding visual perception and considers fundamental questions about the brain and its functions. David Marr's posthumously published Vision (1982) influenced a generation of brain and cognitive scientists, inspiring many to enter the field. In Vision, Marr describes a general framework for understanding visual perception and touches on broader questions about how the brain and its functions can be studied and understood. Researchers from a range of brain and cognitive sciences have long valued Marr's creativity, intellectual power, and ability to integrate insights and data from neuroscience, psychology, and computation. This MIT Press edition makes Marr's influential work available to a new generation of students and scientists. In Marr's framework, the process of vision constructs a set of representations, starting from a description of the input image and culminating with a description of three-dimensional objects in the surrounding environment. A central theme, and one that has had far-reaching influence in both neuroscience and cognitive science, is the notion of different levels of analysis—in Marr's framework, the computational level, the algorithmic level, and the hardware implementation level. Now, thirty years later, the main problems that occupied Marr remain fundamental open problems in the study of perception. Vision provides inspiration for the continuing efforts to integrate knowledge from cognition and computation to understand vision and the brain.
Cluster Computing for Robotics and Computer Vision
Author: Damian M. Lyons
Publisher: World Scientific
ISBN: 9812836357
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
In this book, we look at how cluster technology can be leveraged to build better robots. Algorithms and approaches in key areas of robotics and computer vision, such as map building, path planning, target tracking, action selection and learning, are reviewed and cluster implementations for these are presented. The objective of the book is to give professionals working in the beowulf cluster or robotics and computer vision fields a concrete view of the strong synergy between the areas as well as to spur further fruitful exploitation of this connection. The book is written at a level appropriate for an advanced undergraduate or graduate student. The key concepts in robotics, computer vision and cluster computing are introduced before being used to make the text useful to a wide audience in these fields.
Publisher: World Scientific
ISBN: 9812836357
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
In this book, we look at how cluster technology can be leveraged to build better robots. Algorithms and approaches in key areas of robotics and computer vision, such as map building, path planning, target tracking, action selection and learning, are reviewed and cluster implementations for these are presented. The objective of the book is to give professionals working in the beowulf cluster or robotics and computer vision fields a concrete view of the strong synergy between the areas as well as to spur further fruitful exploitation of this connection. The book is written at a level appropriate for an advanced undergraduate or graduate student. The key concepts in robotics, computer vision and cluster computing are introduced before being used to make the text useful to a wide audience in these fields.
Deep Learning
Author: Ian Goodfellow
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801
Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801
Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Mindstorms
Author: Seymour A Papert
Publisher: Basic Books
ISBN: 154167510X
Category : Education
Languages : en
Pages : 256
Book Description
In this revolutionary book, a renowned computer scientist explains the importance of teaching children the basics of computing and how it can prepare them to succeed in the ever-evolving tech world. Computers have completely changed the way we teach children. We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers. Technology changes every day, but the basic ways that computers can help us learn remain. For thousands of teachers and parents who have sought creative ways to help children learn with computers, Mindstorms is their bible.
Publisher: Basic Books
ISBN: 154167510X
Category : Education
Languages : en
Pages : 256
Book Description
In this revolutionary book, a renowned computer scientist explains the importance of teaching children the basics of computing and how it can prepare them to succeed in the ever-evolving tech world. Computers have completely changed the way we teach children. We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers. Technology changes every day, but the basic ways that computers can help us learn remain. For thousands of teachers and parents who have sought creative ways to help children learn with computers, Mindstorms is their bible.
Introduction to Deep Learning
Author: Sandro Skansi
Publisher: Springer
ISBN: 3319730045
Category : Computers
Languages : en
Pages : 196
Book Description
This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism. This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.
Publisher: Springer
ISBN: 3319730045
Category : Computers
Languages : en
Pages : 196
Book Description
This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism. This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.
Computational Models for Cognitive Vision
Author: Hiranmay Ghosh
Publisher: John Wiley & Sons
ISBN: 1119527899
Category : Computers
Languages : en
Pages : 240
Book Description
Learn how to apply cognitive principles to the problems of computer vision Computational Models for Cognitive Vision formulates the computational models for the cognitive principles found in biological vision, and applies those models to computer vision tasks. Such principles include perceptual grouping, attention, visual quality and aesthetics, knowledge-based interpretation and learning, to name a few. The author’s ultimate goal is to provide a framework for creation of a machine vision system with the capability and versatility of the human vision. Written by Dr. Hiranmay Ghosh, the book takes readers through the basic principles and the computational models for cognitive vision, Bayesian reasoning for perception and cognition, and other related topics, before establishing the relationship of cognitive vision with the multi-disciplinary field broadly referred to as “artificial intelligence”. The principles are illustrated with diverse application examples in computer vision, such as computational photography, digital heritage and social robots. The author concludes with suggestions for future research and salient observations about the state of the field of cognitive vision. Other topics covered in the book include: · knowledge representation techniques · evolution of cognitive architectures · deep learning approaches for visual cognition Undergraduate students, graduate students, engineers, and researchers interested in cognitive vision will consider this an indispensable and practical resource in the development and study of computer vision.
Publisher: John Wiley & Sons
ISBN: 1119527899
Category : Computers
Languages : en
Pages : 240
Book Description
Learn how to apply cognitive principles to the problems of computer vision Computational Models for Cognitive Vision formulates the computational models for the cognitive principles found in biological vision, and applies those models to computer vision tasks. Such principles include perceptual grouping, attention, visual quality and aesthetics, knowledge-based interpretation and learning, to name a few. The author’s ultimate goal is to provide a framework for creation of a machine vision system with the capability and versatility of the human vision. Written by Dr. Hiranmay Ghosh, the book takes readers through the basic principles and the computational models for cognitive vision, Bayesian reasoning for perception and cognition, and other related topics, before establishing the relationship of cognitive vision with the multi-disciplinary field broadly referred to as “artificial intelligence”. The principles are illustrated with diverse application examples in computer vision, such as computational photography, digital heritage and social robots. The author concludes with suggestions for future research and salient observations about the state of the field of cognitive vision. Other topics covered in the book include: · knowledge representation techniques · evolution of cognitive architectures · deep learning approaches for visual cognition Undergraduate students, graduate students, engineers, and researchers interested in cognitive vision will consider this an indispensable and practical resource in the development and study of computer vision.
Computational Models of Visual Processing
Author: Michael S. Landy
Publisher: MIT Press
ISBN: 9780262121552
Category : Medical
Languages : en
Pages : 420
Book Description
The more than twenty contributions in this book, all new and previously unpublished, provide an up-to-date survey of contemporary research on computational modeling of the visual system. The approaches represented range from neurophysiology to psychophysics, and from retinal function to the analysis of visual cues to motion, color, texture, and depth. The contributions are linked thematically by a consistent consideration of the links between empirical data and computational models in the study of visual function. An introductory chapter by Edward Adelson and James Bergen gives a new and elegant formalization of the elements of early vision. Subsequent sections treat receptors and sampling, models of neural function, detection and discrimination, color and shading, motion and texture, and 3D shape. Each section is introduced by a brief topical review and summary. ContributorsEdward H. Adelson, Albert J. Ahumada, Jr., James R. Bergen, David G. Birch, David H. Brainard, Heinrich H. Bülthoff, Charles Chubb, Nancy J. Coletta, Michael D'Zmura, John P. Frisby, Norma Graham, Norberto M. Grzywacz, P. William Haake, Michael J. Hawken, David J. Heeger, Donald C. Hood, Elizabeth B. Johnston, Daniel Kersten, Michael S. Landy, Peter Lennie, J. Stephen Mansfield, J. Anthony Movshon, Jacob Nachmias, Andrew J. Parker, Denis G. Pelli, Stephen B. Pollard, R. Clay Reid, Robert Shapley, Carlo L. M. Tiana, Brian A. Wandell, Andrew B. Watson, David R. Williams, Hugh R. Wilson, Yuede. Yang, Alan L. Yuille
Publisher: MIT Press
ISBN: 9780262121552
Category : Medical
Languages : en
Pages : 420
Book Description
The more than twenty contributions in this book, all new and previously unpublished, provide an up-to-date survey of contemporary research on computational modeling of the visual system. The approaches represented range from neurophysiology to psychophysics, and from retinal function to the analysis of visual cues to motion, color, texture, and depth. The contributions are linked thematically by a consistent consideration of the links between empirical data and computational models in the study of visual function. An introductory chapter by Edward Adelson and James Bergen gives a new and elegant formalization of the elements of early vision. Subsequent sections treat receptors and sampling, models of neural function, detection and discrimination, color and shading, motion and texture, and 3D shape. Each section is introduced by a brief topical review and summary. ContributorsEdward H. Adelson, Albert J. Ahumada, Jr., James R. Bergen, David G. Birch, David H. Brainard, Heinrich H. Bülthoff, Charles Chubb, Nancy J. Coletta, Michael D'Zmura, John P. Frisby, Norma Graham, Norberto M. Grzywacz, P. William Haake, Michael J. Hawken, David J. Heeger, Donald C. Hood, Elizabeth B. Johnston, Daniel Kersten, Michael S. Landy, Peter Lennie, J. Stephen Mansfield, J. Anthony Movshon, Jacob Nachmias, Andrew J. Parker, Denis G. Pelli, Stephen B. Pollard, R. Clay Reid, Robert Shapley, Carlo L. M. Tiana, Brian A. Wandell, Andrew B. Watson, David R. Williams, Hugh R. Wilson, Yuede. Yang, Alan L. Yuille