Computational Insights into Fuels and Chemicals Extraction from Microbial Biorefineries

Computational Insights into Fuels and Chemicals Extraction from Microbial Biorefineries PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Over the past two decades, substantial investments have been made in engineering microorganisms to produce specific fuels and chemicals as part of the global bioeconomy. Many target molecules accumulate intracellularly, and a challenge is how to effectively extract the product from the cells without needing to destroy them due to the barrier imposed by the cell membrane. For some hydrophobic compounds, an organic overlay is an effective strategy for nondestructive product extraction, although the relationship between functional groups on the product and the rate of extraction are not well understood. Through both biased and unbiased molecular dynamics simulations for a range of fatty acyl compounds and terpenoids, we directly compute permeability coefficients for different steps of the extraction process. Via comparative analysis between the calculated permeability coefficients and observed interactions between the compounds and the membrane, we determine how the rate limiting steps vary depending on product chemistry. For instance, fatty aldehydes are found to transfer very rapidly across the membrane bilayer relative to alcohols, although their comparable rate of extraction into the organic phase makes them equally effective at extraction from the cell. In assessing the terpenoids, it is found that in general a modestly hydrophilic product improves desorption rates into an organic phase sufficiently to make up for their lower bilayer crossing rate. With this new insight, we can more effectively engineer microorganisms towards the production of these modestly hydrophilic fuel precursors or chemicals.

Computational Insights into Fuels and Chemicals Extraction from Microbial Biorefineries

Computational Insights into Fuels and Chemicals Extraction from Microbial Biorefineries PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Over the past two decades, substantial investments have been made in engineering microorganisms to produce specific fuels and chemicals as part of the global bioeconomy. Many target molecules accumulate intracellularly, and a challenge is how to effectively extract the product from the cells without needing to destroy them due to the barrier imposed by the cell membrane. For some hydrophobic compounds, an organic overlay is an effective strategy for nondestructive product extraction, although the relationship between functional groups on the product and the rate of extraction are not well understood. Through both biased and unbiased molecular dynamics simulations for a range of fatty acyl compounds and terpenoids, we directly compute permeability coefficients for different steps of the extraction process. Via comparative analysis between the calculated permeability coefficients and observed interactions between the compounds and the membrane, we determine how the rate limiting steps vary depending on product chemistry. For instance, fatty aldehydes are found to transfer very rapidly across the membrane bilayer relative to alcohols, although their comparable rate of extraction into the organic phase makes them equally effective at extraction from the cell. In assessing the terpenoids, it is found that in general a modestly hydrophilic product improves desorption rates into an organic phase sufficiently to make up for their lower bilayer crossing rate. With this new insight, we can more effectively engineer microorganisms towards the production of these modestly hydrophilic fuel precursors or chemicals.

Computational Insights Into Fuels and Chemicals Extraction from Microbial Biorefineries

Computational Insights Into Fuels and Chemicals Extraction from Microbial Biorefineries PDF Author: Joshua Vermaas
Publisher:
ISBN:
Category : Biomass energy
Languages : en
Pages : 1

Get Book Here

Book Description


Biorefineries

Biorefineries PDF Author: Michele Aresta
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110331586
Category : Science
Languages : en
Pages : 368

Get Book Here

Book Description
Biorefineries compiles the basic science and technologies used to convert terrestrial and aquatic biomass into essential molecular compounds and polymeric materials. The book provides in depth insights into this fairly recent concept of industrial chemistry that aims to achieve optimal economic profits while minimizing the environmental impact. Chapters written by renowned experts cover, amongst others, the application of catalysis, downstream processing, biomass sourced olefins, lignin biorefinery techniques and biogas. The authors thoroughly examine and explain the value chain for biomass conversion into platform molecules and their transformation into final products. A comprehensive thematic overview on the topic giving beginners access to fundamental concepts is presented. Supplemented by numerous full color figures and tables, the contents impart knowledge about the involved techniques. Advanced students and experts in the field will find the summary of state-of-the-art research and current literature of valuable interest. Explores the enormous potential of biomass conversion as a future source for fuels and chemicals Focuses on both general scientific background and current innovations in the field of biorefinery Targets students and researchers in Chemistry, Chemical Engineering, Biotechnology, and Materials Science About the Editors Prof. Michele Aresta, Chair of the Scientific Committee of CIRCC in Italy and holds the IMM Chair at the Department of Chemical and Biomolecular Engineering at NUS, Singapore. He is author of over 200 papers and Author or Editor of nine books. Prof. Angela Dibenedetto, Associate Professor at the Department of Chemistry of the University of Bari (Italy) focused on carbon dioxide utilization by applying biorefinery concepts; and Director of the Interuniversity Consortium on Chemical Reactivity and Catalysis-CIRCC. Prof. Franck Dumeignil, Deputy Director of the CNRS joint Unit of Catalysis and Chemistry of Solid (UCCS) of Lille University (France); project coordinator of several projects on chemistry, including the EuroBioRef Project for designing next generation biorefineries.

A Sustainable Bioeconomy

A Sustainable Bioeconomy PDF Author: Mika Sillanpää
Publisher: Springer
ISBN: 3319556371
Category : Science
Languages : en
Pages : 348

Get Book Here

Book Description
An authoritative and comprehensive volume of knowledge and green technologies wholly focused on the future of the bioeconomy. The authors present data, show opportunities, discuss R&D findings, analyze strategies, assess the wider economic impact, showcase achievements, criticize policies and propose solutions for the green revolution in biofuels, biochemicals and biomaterials’ production and power generation. A fascinating range of case studies from the US, China and many European countries are used to inform readers about the impact of this field on society and how various technologies are currently being implemented. Additionally, the role of industry on this green industrial revolution is outlined with contributions from several major companies such as DuPont (US), UPM-Kymmene Oy (Finland), Anhui BBCA Biochemical Co (China).

Activity-Based Protein Profiling

Activity-Based Protein Profiling PDF Author: Benjamin F. Cravatt
Publisher: Springer
ISBN: 3030111431
Category : Medical
Languages : en
Pages : 417

Get Book Here

Book Description
This volume provides a collection of contemporary perspectives on using activity-based protein profiling (ABPP) for biological discoveries in protein science, microbiology, and immunology. A common theme throughout is the special utility of ABPP to interrogate protein function and small-molecule interactions on a global scale in native biological systems. Each chapter showcases distinct advantages of ABPP applied to diverse protein classes and biological systems. As such, the book offers readers valuable insights into the basic principles of ABPP technology and how to apply this approach to biological questions ranging from the study of post-translational modifications to targeting bacterial effectors in host-pathogen interactions.

Integrated Biorefineries

Integrated Biorefineries PDF Author: Paul R. Stuart
Publisher: CRC Press
ISBN: 1439803471
Category : Science
Languages : en
Pages : 873

Get Book Here

Book Description
Integrated Biorefineries: Design, Analysis, and Optimization examines how to create a competitive edge in biorefinery innovation through integration into existing processes and infrastructure. Leading experts from around the world working in design, synthesis, and optimization of integrated biorefineries present the various aspects of this complex

Lignin Valorization

Lignin Valorization PDF Author: Gregg T. Beckham
Publisher: Royal Society of Chemistry
ISBN: 1782625542
Category : Science
Languages : en
Pages : 544

Get Book Here

Book Description
"Chapters will specifically focus on the production of fuels and chemicals from lignin."--Page [4] of cover.

Green Extraction of Natural Products

Green Extraction of Natural Products PDF Author: Farid Chemat
Publisher: John Wiley & Sons
ISBN: 3527676813
Category : Science
Languages : en
Pages : 384

Get Book Here

Book Description
Extraction processes are essential steps in numerous industrial applications from perfume over pharmaceutical to fine chemical industry. Nowadays, there are three key aspects in industrial extraction processes: economy and quality, as well as environmental considerations. This book presents a complete picture of current knowledge on green extraction in terms of innovative processes, original methods, alternative solvents and safe products, and provides the necessary theoretical background as well as industrial application examples and environmental impacts. Each chapter is written by experts in the field and the strong focus on green chemistry throughout the book makes this book a unique reference source. This book is intended to be a first step towards a future cooperation in a new extraction of natural products, built to improve both fundamental and green parameters of the techniques and to increase the amount of extracts obtained from renewable resources with a minimum consumption of energy and solvents, and the maximum safety for operators and the environment.

Separation and Purification Technologies in Biorefineries

Separation and Purification Technologies in Biorefineries PDF Author: Shri Ramaswamy
Publisher: John Wiley & Sons
ISBN: 111849346X
Category : Science
Languages : en
Pages : 730

Get Book Here

Book Description
Separation and purification processes play a critical role in biorefineries and their optimal selection, design and operation to maximise product yields and improve overall process efficiency. Separations and purifications are necessary for upstream processes as well as in maximising and improving product recovery in downstream processes. These processes account for a significant fraction of the total capital and operating costs and also are highly energy intensive. Consequently, a better understanding of separation and purification processes, current and possible alternative and novel advanced methods is essential for achieving the overall techno-economic feasibility and commercial success of sustainable biorefineries. This book presents a comprehensive overview focused specifically on the present state, future challenges and opportunities for separation and purification methods and technologies in biorefineries. Topics covered include: Equilibrium Separations: Distillation, liquid-liquid extraction and supercritical fluid extraction. Affinity-Based Separations: Adsorption, ion exchange, and simulated moving bed technologies. Membrane Based Separations: Microfiltration, ultrafiltration and diafiltration, nanofiltration, membrane pervaporation, and membrane distillation. Solid-liquid Separations: Conventional filtration and solid-liquid extraction. Hybrid/Integrated Reaction-Separation Systems: Membrane bioreactors, extractive fermentation, reactive distillation and reactive absorption. For each of these processes, the fundamental principles and design aspects are presented, followed by a detailed discussion and specific examples of applications in biorefineries. Each chapter also considers the market needs, industrial challenges, future opportunities, and economic importance of the separation and purification methods. The book concludes with a series of detailed case studies including cellulosic bioethanol production, extraction of algae oil from microalgae, and production of biopolymers. Separation and Purification Technologies in Biorefineries is an essential resource for scientists and engineers, as well as researchers and academics working in the broader conventional and emerging bio-based products industry, including biomaterials, biochemicals, biofuels and bioenergy.

Gaseous Carbon Waste Streams Utilization

Gaseous Carbon Waste Streams Utilization PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309483360
Category : Science
Languages : en
Pages : 257

Get Book Here

Book Description
In the quest to mitigate the buildup of greenhouse gases in Earth's atmosphere, researchers and policymakers have increasingly turned their attention to techniques for capturing greenhouse gases such as carbon dioxide and methane, either from the locations where they are emitted or directly from the atmosphere. Once captured, these gases can be stored or put to use. While both carbon storage and carbon utilization have costs, utilization offers the opportunity to recover some of the cost and even generate economic value. While current carbon utilization projects operate at a relatively small scale, some estimates suggest the market for waste carbon-derived products could grow to hundreds of billions of dollars within a few decades, utilizing several thousand teragrams of waste carbon gases per year. Gaseous Carbon Waste Streams Utilization: Status and Research Needs assesses research and development needs relevant to understanding and improving the commercial viability of waste carbon utilization technologies and defines a research agenda to address key challenges. The report is intended to help inform decision making surrounding the development and deployment of waste carbon utilization technologies under a variety of circumstances, whether motivated by a goal to improve processes for making carbon-based products, to generate revenue, or to achieve environmental goals.