Computational Approaches in Condensed-Matter Physics

Computational Approaches in Condensed-Matter Physics PDF Author: Seiji Miyashita
Publisher:
ISBN: 9783642848223
Category :
Languages : en
Pages : 316

Get Book

Book Description

Computational Approaches in Condensed-Matter Physics

Computational Approaches in Condensed-Matter Physics PDF Author: Seiji Miyashita
Publisher:
ISBN: 9783642848223
Category :
Languages : en
Pages : 316

Get Book

Book Description


Computational Approaches to Novel Condensed Matter Systems

Computational Approaches to Novel Condensed Matter Systems PDF Author: M.P. Das
Publisher: Springer Science & Business Media
ISBN: 1475797915
Category : Science
Languages : en
Pages : 279

Get Book

Book Description
This volume contains the lectures given at the Third Gordon Godfrey International Workshop on Computational Approaches to Novel Condensed Matter Systems which was held at The University of New South Wales July 12-17, 1993. Lecturers from Asia, Australia, Europe and North America gave a total of twenty-nine lectures which were spread over the five days. Unfortunately we were not able to include in this volume the lectures of S. Das Sarma from the University of Maryland on "Non-Equilibrium Growth as a Self-Organised Phenomenon" due to constraints of time. The workshops have been held annually since 1991 in Sydney, each covering a novel research area in condensed matter physics that is of topical interest. Australia has a strong tradition of research in condensed matter physics. The workshops are jointly organised by the School of Physics at the University of New South Wales (Sydney) and the Department of Theoretical Physics, Research School of Physical Sciences and Engineering at the Australian National University (Canberra). The late Gordon God frey was an Associate Professor of Physics at the University of New South Wales. He bequeathed his estate for the promotion and teaching of theoretical physics within the university. The primary purpose of each workshop is to expose post-graduate students in physics to both informal interaction and formal lectures from recognised international leaders in topical research areas. Past experience has demonstrated again and again that to be informed about a new field there is no substitute for personal contact and interaction.

Computational Approaches in Condensed-Matter Physics

Computational Approaches in Condensed-Matter Physics PDF Author: Seiji Miyashita
Publisher: Springer Science & Business Media
ISBN: 3642848214
Category : Science
Languages : en
Pages : 301

Get Book

Book Description
Interacting many-body systems are the main subjects of research in theoretical condensed matter physics, and they are the source of both the interest and the difficulty in this field. In order to understand the macroscopic properties of matter in terms of macroscopic knowledge, many analytic and approximate methods have been introduced. The contributions to this proceedings volume focus on the most recent developments of computational approaches in condensed matter physics. Monte Carlo methods and molecular dynamics simulations applied to strongly correlated classical and quantum systems such as electron systems, quantum spin systems, spin glassss, coupled map systems, polymers and other random and comlex systems are reviewed. Comprising easy to follow introductions to each field covered and also more specialized contributions,this proceedings volume explains why computational approaches are necessary and how different fields are related to each other.

Computational Approaches in Physics

Computational Approaches in Physics PDF Author: Maria Fyta
Publisher: Morgan & Claypool Publishers
ISBN: 168174418X
Category : Computers
Languages : en
Pages : 130

Get Book

Book Description
Computational Approaches in Physics reviews computational schemes which are used in the simulations of physical systems. These range from very accurate ab initio techniques up to coarse-grained and mesoscopic schemes. The choice of the method is based on the desired accuracy and computational efficiency. A bottom-up approach is used to present the various simulation methods used in Physics, starting from the lower level and the most accurate methods, up to particle-based ones. The book outlines the basic theory underlying each technique and its complexity, addresses the computational implications and issues in the implementation, as well as present representative examples. A link to the most common computational codes, commercial or open source is listed in each chapter. The strengths and deficiencies of the variety of techniques discussed in this book are presented in detail and visualization tools commonly used to make the simulation data more comprehensive are also discussed. In the end, specific techniques are used as bridges across different disciplines. To this end, examples of different systems tackled with the same methods are presented. The appendices include elements of physical theory which are prerequisites in understanding the simulation methods.

Symmetry and Condensed Matter Physics

Symmetry and Condensed Matter Physics PDF Author: M. El-Batanouny
Publisher: Cambridge University Press
ISBN: 1139469517
Category : Science
Languages : en
Pages : 3

Get Book

Book Description
Unlike existing texts, this book blends for the first time three topics in physics - symmetry, condensed matter physics and computational methods - into one pedagogical textbook. It includes new concepts in mathematical crystallography; experimental methods capitalizing on symmetry aspects; non-conventional applications such as Fourier crystallography, color groups, quasicrystals and incommensurate systems; as well as concepts and techniques behind the Landau theory of phase transitions. Adopting a computational approach to the application of group theoretical techniques to solving symmetry related problems, it dramatically alleviates the need for intensive calculations usually found in the presentation of symmetry. Writing computer programs helps the student achieve a firm understanding of the underlying concepts, and sample programs, based on Mathematica, are presented throughout the book. Containing over 150 exercises, this textbook is ideal for graduate students in condensed matter physics, materials science, and chemistry. Solutions and computer programs are available online at www.cambridge.org/9780521828451.

Computational Approaches in Condensed-Matter Physics

Computational Approaches in Condensed-Matter Physics PDF Author: Seiji Miyashita
Publisher: Springer
ISBN: 9783540557999
Category : Science
Languages : en
Pages : 299

Get Book

Book Description
Interacting many-body systems are the main subjects of research in theoretical condensed matter physics, and they are the source of both the interest and the difficulty in this field. In order to understand the macroscopic properties of matter in terms of macroscopic knowledge, many analytic and approximate methods have been introduced. The contributions to this proceedings volume focus on the most recent developments of computational approaches in condensed matter physics. Monte Carlo methods and molecular dynamics simulations applied to strongly correlated classical and quantum systems such as electron systems, quantum spin systems, spin glassss, coupled map systems, polymers and other random and comlex systems are reviewed. Comprising easy to follow introductions to each field covered and also more specialized contributions,this proceedings volume explains why computational approaches are necessary and how different fields are related to each other.

Symmetry and Condensed Matter Physics

Symmetry and Condensed Matter Physics PDF Author: M. El-Batanouny
Publisher: Cambridge University Press
ISBN: 9780521828451
Category : Science
Languages : en
Pages : 936

Get Book

Book Description
Unlike existing texts, this book blends for the first time three topics in physics - symmetry, condensed matter physics and computational methods - into one pedagogical textbook. It includes new concepts in mathematical crystallography, experimental methods capitalizing on symmetry aspects, non-conventional applications such as Fourier crystallography, color groups, quasicrystals and incommensurate systems, as well as concepts and techniques behind the Landau theory of phase transitions. Ideal for graduate students in condensed matter physics, materials science, and chemistry.

Computational Methods in Condensed Matter: Electronic Structure

Computational Methods in Condensed Matter: Electronic Structure PDF Author: A.A. Katsnelson
Publisher: Springer Science & Business Media
ISBN: 9780883188651
Category : Science
Languages : en
Pages : 220

Get Book

Book Description
"Blurb & Contents" This current and comprehensive treatment of the physics of small- amplitude waves in hot magnetized plasmas provides a thorough update of the author's classic Theory of Plasma Waves. New topics include quasi-linear theory, inhomogeneous plasmas, collisions, absolute and convective instability, and mode conversion. Valuable for graduates and advanced undergraduates and an indispensable reference work for researchers in plasmas, controlled fusion, and space science.

Interacting Electrons

Interacting Electrons PDF Author: Richard M. Martin
Publisher: Cambridge University Press
ISBN: 1316558568
Category : Science
Languages : en
Pages : 843

Get Book

Book Description
Recent progress in the theory and computation of electronic structure is bringing an unprecedented level of capability for research. Many-body methods are becoming essential tools vital for quantitative calculations and understanding materials phenomena in physics, chemistry, materials science and other fields. This book provides a unified exposition of the most-used tools: many-body perturbation theory, dynamical mean field theory and quantum Monte Carlo simulations. Each topic is introduced with a less technical overview for a broad readership, followed by in-depth descriptions and mathematical formulation. Practical guidelines, illustrations and exercises are chosen to enable readers to appreciate the complementary approaches, their relationships, and the advantages and disadvantages of each method. This book is designed for graduate students and researchers who want to use and understand these advanced computational tools, get a broad overview, and acquire a basis for participating in new developments.

The Monte Carlo Method in Condensed Matter Physics

The Monte Carlo Method in Condensed Matter Physics PDF Author: Kurt Binder
Publisher: Springer Science & Business Media
ISBN: 3662028557
Category : Science
Languages : en
Pages : 406

Get Book

Book Description
The Monte Carlo method is now widely used and commonly accepted as an important and useful tool in solid state physics and related fields. It is broadly recognized that the technique of "computer simulation" is complementary to both analytical theory and experiment, and can significantly contribute to ad vancing the understanding of various scientific problems. Widespread applications of the Monte Carlo method to various fields of the statistical mechanics of condensed matter physics have already been reviewed in two previously published books, namely Monte Carlo Methods in Statistical Physics (Topics Curro Phys. , Vol. 7, 1st edn. 1979, 2ndedn. 1986) and Applications of the Monte Carlo Method in Statistical Physics (Topics Curro Phys. , Vol. 36, 1st edn. 1984, 2nd edn. 1987). Meanwhile the field has continued its rapid growth and expansion, and applications to new fields have appeared that were not treated at all in the above two books (e. g. studies of irreversible growth phenomena, cellular automata, interfaces, and quantum problems on lattices). Also, new methodic aspects have emerged, such as aspects of efficient use of vector com puters or parallel computers, more efficient analysis of simulated systems con figurations, and methods to reduce critical slowing down at i>hase transitions. Taken together with the extensive activity in certain traditional areas of research (simulation of classical and quantum fluids, of macromolecular materials, of spin glasses and quadrupolar glasses, etc.