Computational and Statistical Methods for Extracting Biological Signal from High-Dimensional Microbiome Data

Computational and Statistical Methods for Extracting Biological Signal from High-Dimensional Microbiome Data PDF Author: Gibraan Rahman
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Next-generation sequencing (NGS) has effected an explosion of research into the relationship between genetic information and a variety of biological conditions. One of the most exciting areas of study is how the trillions of microbial species that we share this Earth with affect our health. However, the process of extracting useful biological insights from this breadth of data is far from trivial. There are numerous statistical and computational considerations in addition to the already complex and messy biological problems. In this thesis, I describe my work on developing and implementing software to tackle the complex world of statistical microbiome analysis. In the first part of this thesis, we review the applications and challenges of performing dimensionality reduction on microbiome data comprising thousands of microbial taxa. When dealing with this high dimensionality, it is imperative to be able to get an overview of the community structure in a lower dimensional space that can be both visualized and interpreted. We review the statistical considerations for dimensionality reduction and the existing tools and algorithms that can and cannot address them. This includes discussions about sparsity, compositionality, and phylogenetic signal. We also make recommendations about tools and algorithms to consider for different use-cases. In the second part of this thesis, we present a new software, Evident, designed to assist researchers with statistical analysis of microbiome effect sizes and power analysis. Effect sizes of statistical tests are not widely reported in microbiome datasets, limiting the interpretability of community differences such as alpha and beta diversity. As more large microbiome studies are produced, researchers have the opportunity to mine existing datasets to get a sense of the effect size for different biological conditions. These, in turn, can be used to perform power analysis prior to designing an experiment, allowing researchers to better allocate resources. We show how Evident is scalable to dozens of datasets and provides easy calculation and exploration of effect sizes and power analysis from existing data. In the third part of this thesis, we describe a novel investigation into the joint microbiome and metabolome axis in colorectal cancer. In most cases of sporadic colorectal cancers (CRC), tumorigenesis is a multistep process driven by genomic alterations in concert with dietary influences. In addition, mounting evidence has implicated the gut microbiome as an effector in the development and progression of CRC. While large meta-analyses have provided mechanistic insight into disease progression in CRC patients, study heterogeneity has limited causal associations. To address this limitation, multi-omics studies on genetically controlled cohorts of mice were performed to distinguish genetic and dietary influences. Diet was identified as the major driver of microbial and metabolomic differences, with reductions in alpha diversity and widespread changes in cecal metabolites seen in HFD-fed mice. Similarly, the levels of non-classic amino acid conjugated forms of the bile acid cholic acid (AA-CAs) increased with HFD. We show that these AA-CAs signal through the nuclear receptor FXR and membrane receptor TGR5 to functionally impact intestinal stem cell growth. In addition, the poor intestinal permeability of these AA-CAs supports their localization in the gut. Moreover, two cryptic microbial strains, Ileibacterium valens and Ruminococcus gnavus, were shown to have the capacity to synthesize these AA-CAs. This multi-omics dataset from CRC mouse models supports diet-induced shifts in the microbiome and metabolome in disease progression with potential utility in directing future diagnostic and therapeutic developments. In the fourth chapter, we demonstrate a new framework for performing differential abundance analysis using customized statistical modeling. As we learn more and more about the relationship between the microbiome and biological conditions, experimental protocols are becoming more and more complex. For example, meta-analyses, interventions, longitudinal studies, etc. are being used to better understand the dynamic nature of the microbiome. However, statistical methods to analyze these relationships are lacking--especially in the field of differential abundance. Finding biomarkers associated with conditions of interest must be performed with statistical care when dealing with these kinds of experimental designs. We present BIRDMAn, a software package integrating probabilistic programming with Stan to build custom models for analyzing microbiome data. We show that, on both simulated and real datasets, BIRDMAn is able to extract novel biological signals that are missed by existing methods. These chapters, taken together, advance our knowledge of statistical analysis of microbiome data and provide tools and references for researchers looking to perform analysis on their own data.

Computational and Statistical Methods for Extracting Biological Signal from High-Dimensional Microbiome Data

Computational and Statistical Methods for Extracting Biological Signal from High-Dimensional Microbiome Data PDF Author: Gibraan Rahman
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Next-generation sequencing (NGS) has effected an explosion of research into the relationship between genetic information and a variety of biological conditions. One of the most exciting areas of study is how the trillions of microbial species that we share this Earth with affect our health. However, the process of extracting useful biological insights from this breadth of data is far from trivial. There are numerous statistical and computational considerations in addition to the already complex and messy biological problems. In this thesis, I describe my work on developing and implementing software to tackle the complex world of statistical microbiome analysis. In the first part of this thesis, we review the applications and challenges of performing dimensionality reduction on microbiome data comprising thousands of microbial taxa. When dealing with this high dimensionality, it is imperative to be able to get an overview of the community structure in a lower dimensional space that can be both visualized and interpreted. We review the statistical considerations for dimensionality reduction and the existing tools and algorithms that can and cannot address them. This includes discussions about sparsity, compositionality, and phylogenetic signal. We also make recommendations about tools and algorithms to consider for different use-cases. In the second part of this thesis, we present a new software, Evident, designed to assist researchers with statistical analysis of microbiome effect sizes and power analysis. Effect sizes of statistical tests are not widely reported in microbiome datasets, limiting the interpretability of community differences such as alpha and beta diversity. As more large microbiome studies are produced, researchers have the opportunity to mine existing datasets to get a sense of the effect size for different biological conditions. These, in turn, can be used to perform power analysis prior to designing an experiment, allowing researchers to better allocate resources. We show how Evident is scalable to dozens of datasets and provides easy calculation and exploration of effect sizes and power analysis from existing data. In the third part of this thesis, we describe a novel investigation into the joint microbiome and metabolome axis in colorectal cancer. In most cases of sporadic colorectal cancers (CRC), tumorigenesis is a multistep process driven by genomic alterations in concert with dietary influences. In addition, mounting evidence has implicated the gut microbiome as an effector in the development and progression of CRC. While large meta-analyses have provided mechanistic insight into disease progression in CRC patients, study heterogeneity has limited causal associations. To address this limitation, multi-omics studies on genetically controlled cohorts of mice were performed to distinguish genetic and dietary influences. Diet was identified as the major driver of microbial and metabolomic differences, with reductions in alpha diversity and widespread changes in cecal metabolites seen in HFD-fed mice. Similarly, the levels of non-classic amino acid conjugated forms of the bile acid cholic acid (AA-CAs) increased with HFD. We show that these AA-CAs signal through the nuclear receptor FXR and membrane receptor TGR5 to functionally impact intestinal stem cell growth. In addition, the poor intestinal permeability of these AA-CAs supports their localization in the gut. Moreover, two cryptic microbial strains, Ileibacterium valens and Ruminococcus gnavus, were shown to have the capacity to synthesize these AA-CAs. This multi-omics dataset from CRC mouse models supports diet-induced shifts in the microbiome and metabolome in disease progression with potential utility in directing future diagnostic and therapeutic developments. In the fourth chapter, we demonstrate a new framework for performing differential abundance analysis using customized statistical modeling. As we learn more and more about the relationship between the microbiome and biological conditions, experimental protocols are becoming more and more complex. For example, meta-analyses, interventions, longitudinal studies, etc. are being used to better understand the dynamic nature of the microbiome. However, statistical methods to analyze these relationships are lacking--especially in the field of differential abundance. Finding biomarkers associated with conditions of interest must be performed with statistical care when dealing with these kinds of experimental designs. We present BIRDMAn, a software package integrating probabilistic programming with Stan to build custom models for analyzing microbiome data. We show that, on both simulated and real datasets, BIRDMAn is able to extract novel biological signals that are missed by existing methods. These chapters, taken together, advance our knowledge of statistical analysis of microbiome data and provide tools and references for researchers looking to perform analysis on their own data.

Statistical Analysis of Microbiome Data

Statistical Analysis of Microbiome Data PDF Author: Somnath Datta
Publisher: Springer Nature
ISBN: 3030733513
Category : Medical
Languages : en
Pages : 349

Get Book Here

Book Description
Microbiome research has focused on microorganisms that live within the human body and their effects on health. During the last few years, the quantification of microbiome composition in different environments has been facilitated by the advent of high throughput sequencing technologies. The statistical challenges include computational difficulties due to the high volume of data; normalization and quantification of metabolic abundances, relative taxa and bacterial genes; high-dimensionality; multivariate analysis; the inherently compositional nature of the data; and the proper utilization of complementary phylogenetic information. This has resulted in an explosion of statistical approaches aimed at tackling the unique opportunities and challenges presented by microbiome data. This book provides a comprehensive overview of the state of the art in statistical and informatics technologies for microbiome research. In addition to reviewing demonstrably successful cutting-edge methods, particular emphasis is placed on examples in R that rely on available statistical packages for microbiome data. With its wide-ranging approach, the book benefits not only trained statisticians in academia and industry involved in microbiome research, but also other scientists working in microbiomics and in related fields.

Statistical and Computational Methods for Microbiome Multi-Omics Data

Statistical and Computational Methods for Microbiome Multi-Omics Data PDF Author: Himel Mallick
Publisher: Frontiers Media SA
ISBN: 2889660915
Category : Science
Languages : en
Pages : 170

Get Book Here

Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.

High-Dimensional Methods to Model Biological Signal in Genome-Wide Studies

High-Dimensional Methods to Model Biological Signal in Genome-Wide Studies PDF Author: Andrew J. Bass
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Recent advancements in sequencing technology have substantially increased the quality and quantity of data in genomics, presenting novel analytical challenges for biological discovery. In particular, foundational ideas developed in statistics over the past century are not easily extended to these high-dimensional datasets. Therefore, creating novel methodologies to analyze this data is a key challenge faced in statistics, and more generally, biology and computational science.Here I focus on building statistical methods for genome-wide analysis that are statistically rigorous, computationally fast, and easy to implement. In particular, I develop four methods that improve statistical inference of high-dimensional biological data. The first focuses on differential expression analysis where I extend the optimal discovery procedure (ODP) to complex study designs and RNA-seq studies. I find that the extended ODP leverages shared biological signal to substantially improve the statistical power compared to other commonly used testing procedures. The second aims to model the functional relationship between sequencing depth and statistical power in RNA-seq differential expression studies. The resulting model, superSeq, accurately predicts the improvement in statistical power when sequencing additional reads in a completed study. Thus superSeq can guide researchers in choosing a sufficient sequencing depth to maximize statistical power while avoiding unnecessary sequencing costs.The third method estimates the posterior distribution of false discovery rate (FDR) quantities, such as local FDRs and q-values, using a Bayesian nonparametric approach. Specifically, I implement an approximation to these posterior distributions that is scalable to genome-wide datasets using variational inference. These estimated posterior distributions are informative in a significance analysis as they capture the uncertainty of FDR quantities in reported results.Finally, I develop a likelihood-based approach to estimating unobserved population structure on the canonical parameter scale. I demonstrate that this framework can flexibly capture arbitrary structure and provide accurate allele frequency estimates while being computationally fast for large population genetic studies. Therefore, this framework is useful for many applications in population genetics, such as accounting for structure in the genome-wide association testing procedure GCATest.Collectively, these four methods address problems typically encountered in a biological analysis and can thus help improve downstream inferences in high-dimensional settings.

Computational Methods for the Analysis of Genomic Data and Biological Processes

Computational Methods for the Analysis of Genomic Data and Biological Processes PDF Author: Francisco A. Gómez Vela
Publisher: MDPI
ISBN: 3039437712
Category : Medical
Languages : en
Pages : 222

Get Book Here

Book Description
In recent decades, new technologies have made remarkable progress in helping to understand biological systems. Rapid advances in genomic profiling techniques such as microarrays or high-performance sequencing have brought new opportunities and challenges in the fields of computational biology and bioinformatics. Such genetic sequencing techniques allow large amounts of data to be produced, whose analysis and cross-integration could provide a complete view of organisms. As a result, it is necessary to develop new techniques and algorithms that carry out an analysis of these data with reliability and efficiency. This Special Issue collected the latest advances in the field of computational methods for the analysis of gene expression data, and, in particular, the modeling of biological processes. Here we present eleven works selected to be published in this Special Issue due to their interest, quality, and originality.

Statistical Methods for High Dimensional Data in Microbiome Research

Statistical Methods for High Dimensional Data in Microbiome Research PDF Author: Sven Kleine Bardenhorst
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Applied Microbiome Statistics

Applied Microbiome Statistics PDF Author: Yinglin Xia
Publisher: CRC Press
ISBN: 1040045669
Category : Mathematics
Languages : en
Pages : 457

Get Book Here

Book Description
This unique book officially defines microbiome statistics as a specific new field of statistics and addresses the statistical analysis of correlation, association, interaction, and composition in microbiome research. It also defines the study of the microbiome as a hypothesis-driven experimental science and describes two microbiome research themes and six unique characteristics of microbiome data, as well as investigating challenges for statistical analysis of microbiome data using the standard statistical methods. This book is useful for researchers of biostatistics, ecology, and data analysts. Presents a thorough overview of statistical methods in microbiome statistics of parametric and nonparametric correlation, association, interaction, and composition adopted from classical statistics and ecology and specifically designed for microbiome research. Performs step-by-step statistical analysis of correlation, association, interaction, and composition in microbiome data. Discusses the issues of statistical analysis of microbiome data: high dimensionality, compositionality, sparsity, overdispersion, zero-inflation, and heterogeneity. Investigates statistical methods on multiple comparisons and multiple hypothesis testing and applications to microbiome data. Introduces a series of exploratory tools to visualize composition and correlation of microbial taxa by barplot, heatmap, and correlation plot. Employs the Kruskal–Wallis rank-sum test to perform model selection for further multi-omics data integration. Offers R code and the datasets from the authors’ real microbiome research and publicly available data for the analysis used. Remarks on the advantages and disadvantages of each of the methods used.

Statistical Methods for High-Dimensional, Spatially-Distributed Microbiome Data from Next-Generation Sequencing

Statistical Methods for High-Dimensional, Spatially-Distributed Microbiome Data from Next-Generation Sequencing PDF Author: Neal Steven Grantham
Publisher:
ISBN:
Category :
Languages : en
Pages : 90

Get Book Here

Book Description


Computational Methods for Microbiome Analysis

Computational Methods for Microbiome Analysis PDF Author: Joao Carlos Setubal
Publisher: Frontiers Media SA
ISBN: 2889664376
Category : Science
Languages : en
Pages : 170

Get Book Here

Book Description


Statistical Methods for Human Microbiome Data Analysis

Statistical Methods for Human Microbiome Data Analysis PDF Author: Jun Chen
Publisher:
ISBN:
Category :
Languages : en
Pages : 107

Get Book Here

Book Description