Computation of Rotor Noise Generation in Turbulent Flow Using Large-eddy Simulation

Computation of Rotor Noise Generation in Turbulent Flow Using Large-eddy Simulation PDF Author: Junye Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 107

Get Book Here

Book Description

Computation of Rotor Noise Generation in Turbulent Flow Using Large-eddy Simulation

Computation of Rotor Noise Generation in Turbulent Flow Using Large-eddy Simulation PDF Author: Junye Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 107

Get Book Here

Book Description


Numerical Simulation of Turbulent Flows and Noise Generation

Numerical Simulation of Turbulent Flows and Noise Generation PDF Author: Christophe Brun
Publisher: Springer Science & Business Media
ISBN: 3540899561
Category : Technology & Engineering
Languages : en
Pages : 344

Get Book Here

Book Description
Large Eddy Simulation (LES) is a high-fidelity approach to the numerical simulation of turbulent flows. Recent developments have shown LES to be able to predict aerodynamic noise generation and propagation as well as the turbulent flow, by means of either a hybrid or a direct approach. This book is based on the results of two French/German research groups working on LES simulations in complex geometries and noise generation in turbulent flows. The results provide insights into modern prediction approaches for turbulent flows and noise generation mechanisms as well as their use for novel noise reduction concepts.

Noise Produced by Turbulent Flow Into a Rotor

Noise Produced by Turbulent Flow Into a Rotor PDF Author: National Aeronautics and Space Adm Nasa
Publisher:
ISBN: 9781729034026
Category :
Languages : en
Pages : 38

Get Book Here

Book Description
An analysis is presented for the calculation of noise produced by turbulent flow into a helicopter rotor. The method is based on the analysis of Amiet for the sound produced by an airfoil moving in rectilinear motion through a turbulent flow field. The rectilinear motion results are used in a quasi-steady manner to calculate the instantaneous spectrum of the rotor noise at any given rotor position; the overall spectrum is then found by averaging the instantaneous spectrum over all rotor azimuth angles. Account is taken of the fact that the rotor spends different amounts of retarded time at different rotor positions. Blade to blade correlation is included in the analysis, leading to harmonics of blade passing frequency. The spectrum of the turbulence entering the rotor is calculated by applying rapid distortion theory to an isotropic turbulence spectrum, assuming that the turbulence is stretched as it is pulled into the rotor. The inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. The analytical basis is provided for a module which was incorporated in NASA's ROTONET helicopter noise prediction program. Amiet, R. K. Unspecified Center NAS1-17763; RTOP 505-63-51...

A Parallel Finite Volume Algorithm for Large-eddy Simulation of Turbulent Flows

A Parallel Finite Volume Algorithm for Large-eddy Simulation of Turbulent Flows PDF Author: Trong T. Bui
Publisher:
ISBN:
Category : Parallel computers
Languages : en
Pages : 28

Get Book Here

Book Description


Noise Produced by Turbulent Flow Into a Rotor: Theory Manual for Noise Calculation

Noise Produced by Turbulent Flow Into a Rotor: Theory Manual for Noise Calculation PDF Author: Roy K. Amiet
Publisher:
ISBN:
Category :
Languages : en
Pages : 42

Get Book Here

Book Description


Large Eddy Simulation of Sound Generation by Turbulent Reacting and Nonreacting Shear Flows

Large Eddy Simulation of Sound Generation by Turbulent Reacting and Nonreacting Shear Flows PDF Author: Alireza Najafi-Yazdi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The objective of the present study was to investigate the mechanisms of sound generation by subsonic jets. Large eddy simulations were performed along with bandpass filtering of the flow and sound in order to gain further insight into the pole of coherent structures in subsonic jet noise generation. A sixth-order compact scheme was used for spatial discretization of the fully compressible Navier-Stokes equations. Time integration was performed through the use of the standard fourth-order, explicit Runge-Kutta scheme. An implicit low dispersion, low dissipation Runge-Kutta (ILDDRK) method was developed and implemented for simulations involving sources of stiffness such as flows near solid boundaries, or combustion. A surface integral acoustic analogy formulation, called Formulation 1C, was developed for farfield sound pressure calculations. Formulation 1C was derived based on the convective wave equation in order to take into account the presence of a mean flow...

Flinovia—Flow Induced Noise and Vibration Issues and Aspects-II

Flinovia—Flow Induced Noise and Vibration Issues and Aspects-II PDF Author: Elena Ciappi
Publisher: Springer
ISBN: 3319767801
Category : Technology & Engineering
Languages : en
Pages : 365

Get Book Here

Book Description
This is the proceedings of the Second International Workshop on Flow Induced Noise and Vibration (FLINOVIA), which was held in Penn State, USA, in April 2016. The authors’ backgrounds represent a mix of academia, government, and industry, and several papers include applications to important problems for underwater vehicles, aerospace structures and commercial transportation. The book offers a valuable reference guide for all those working in the area of flow-induced vibration and noise. Flow induced vibration and noise (FIVN) remains a critical research topic. Even after over 50 years of intensive research, accurate and cost-effective FIVN simulation and measurement techniques remain elusive. This book gathers the latest research from some of the most prominent experts in the field. The book describes methods for characterizing wall pressure fluctuations, including subsonic and supersonic turbulent boundary layer flows over smooth and rough surfaces using computational methods like Large Eddy Simulation; for inferring wall pressure fluctuations using inverse techniques based on panel vibrations or holographic pressure sensor arrays; for calculating the resulting structural vibrations and radiated sound using traditional finite element methods, as well as advanced methods like Energy Finite Elements; for using scaling approaches to universally collapse flow-excited vibration and noise spectra; and for computing time histories of structural response, including alternating stresses.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704

Get Book Here

Book Description


Large Eddy Simulation of Airfoil Self-noise

Large Eddy Simulation of Airfoil Self-noise PDF Author: Joseph George Kocheemoolayil
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Sustaining the continued growth of aviation is critically dependent on managing its noise emission. Developing tools to predict airframe noise from first principles is a pacing item in this regard. Within this context, noise generated by flow past airfoils constitutes an important canonical problem that is also relevant to a wide variety of other applications such as wind turbine noise, cooling fan noise, turbofan noise, propeller noise and helicopter blade noise. The noise generated by a turbulent flow that encounters the trailing edge of an airfoil is the fundamental component of all these problems. Over the past 15 years, significant strides have been made towards using large eddy simulations (LES) for predicting airfoil noise from first-principles. However, they have largely been restricted to canonical configurations at low Reynolds numbers. Perhaps the restriction to low Reynolds numbers is the most serious limitation since majority of the experiments target full-scale Reynolds numbers making one-to-one comparisons impossible. This thesis focuses on extending the scope of LES based predictions to full-scale Reynolds numbers and non-canonical configurations such as the near-stall and post-stall regimes which have received very limited attention owing to their complexity. Wall-modeled large eddy simulations (WMLES) that combine LES with a model for unresolved near-wall turbulence are used to predict airfoil noise at high Reynolds numbers. The Benchmark Problems for Airframe Noise Computations (BANC) workshop is held every year as part of the AIAA/CEAS Aeroacoustics conference. Category 1 of the workshop targets airfoil trailing edge noise prediction at high Reynolds numbers relevant to engineering applications. No first-principles based approach free of empiricism and tunable coefficients has had success in this category to date. Independently validated far-field noise measurements are available for four configurations in the category. Our simulations predict trailing edge noise accurately for all four configurations. Detailed comparisons are made with dedicated experiments. Insensitivity of the simulation results to important aleatory and epistemic uncertainties is established. Resolution requirements for making accurate noise predictions using WMLES are identified through a systematic grid-refinement study. Developing the capability to predict airfoil noise for near-stall and post-stall configurations is necessary to investigate their suspected responsibility for a phenomenon known as Other Amplitude Modulation (OAM) of wind turbine noise. Predicting the flow past a wind turbine airfoil in the post-stall regime is a formidable challenge in itself. In particular, there is a school of thought that large scale three-dimensionality and extreme sensitivity to the experimental facility are inevitable and preclude the possibility of a fair comparison between simulations and measurements in this regime. However, in agreement with a recent theoretical study our simulation results indicate that the lower lift due to large scale three-dimensionality can be reproduced even in span-periodic simulations if the domain size is sufficiently large. The large span simulation predicts the pressure distribution around the airfoil with unprecedented accuracy. Successful prediction of pressure fluctuations on the airfoil surface beneath the suction side boundary layer is demonstrated in the near-stall and post-stall regimes. Previously unavailable two-point statistics of surface pressure fluctuations are documented.

Computational Analysis of Noise Generation by a Rotor Ingesting Turbulent Boundary Layer on an Axisymmetric Body of Revolution

Computational Analysis of Noise Generation by a Rotor Ingesting Turbulent Boundary Layer on an Axisymmetric Body of Revolution PDF Author: Di Zhou
Publisher:
ISBN:
Category :
Languages : en
Pages : 109

Get Book Here

Book Description