Companion to Concrete Mathematics

Companion to Concrete Mathematics PDF Author: Z. A. Melzak
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 294

Get Book Here

Book Description

Companion to Concrete Mathematics

Companion to Concrete Mathematics PDF Author: Z. A. Melzak
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 294

Get Book Here

Book Description


Concrete Mathematics

Concrete Mathematics PDF Author: Ronald L. Graham
Publisher: Addison-Wesley Professional
ISBN: 0134389980
Category : Computers
Languages : en
Pages : 811

Get Book Here

Book Description
This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.

Concrete Math Companion

Concrete Math Companion PDF Author: Kenneth E. (Kenneth Eugene) Iverson
Publisher:
ISBN: 9781895721102
Category :
Languages : en
Pages : 125

Get Book Here

Book Description


How to Think Like a Mathematician

How to Think Like a Mathematician PDF Author: Kevin Houston
Publisher: Cambridge University Press
ISBN: 1139477056
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
Looking for a head start in your undergraduate degree in mathematics? Maybe you've already started your degree and feel bewildered by the subject you previously loved? Don't panic! This friendly companion will ease your transition to real mathematical thinking. Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.

Invitation to Geometry

Invitation to Geometry PDF Author: Z. A. Melzak
Publisher: Courier Corporation
ISBN: 0486789489
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
Intended for students of many different backgrounds with only a modest knowledge of mathematics, this text features self-contained chapters that can be adapted to several types of geometry courses. Only a slight acquaintance with mathematics beyond the high-school level is necessary, including some familiarity with calculus and linear algebra. This text's introductions to several branches of geometry feature topics and treatments based on memorability and relevance. The author emphasizes connections with calculus and simple mechanics, focusing on developing students' grasp of spatial relationships. Subjects include classical Euclidean material, polygonal and circle isoperimetry, conics and Pascal's theorem, geometrical optimization, geometry and trigonometry on a sphere, graphs, convexity, and elements of differential geometry of curves. Additional material may be conveniently introduced in several places, and each chapter concludes with exercises of varying degrees of difficulty.

Mathematics: A Very Short Introduction

Mathematics: A Very Short Introduction PDF Author: Timothy Gowers
Publisher: OUP Oxford
ISBN: 0191579416
Category : Mathematics
Languages : en
Pages : 160

Get Book Here

Book Description
The aim of this book is to explain, carefully but not technically, the differences between advanced, research-level mathematics, and the sort of mathematics we learn at school. The most fundamental differences are philosophical, and readers of this book will emerge with a clearer understanding of paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questions about the mathematical community (such as "Is it true that mathematicians burn out at the age of 25?") ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

Strengths-Based Teaching and Learning in Mathematics

Strengths-Based Teaching and Learning in Mathematics PDF Author: Beth McCord Kobett
Publisher: Corwin
ISBN: 1544374909
Category : Education
Languages : en
Pages : 273

Get Book Here

Book Description
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.

Introductory Discrete Mathematics

Introductory Discrete Mathematics PDF Author: V. K . Balakrishnan
Publisher: Courier Corporation
ISBN: 0486140385
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. More than 200 exercises, many with complete solutions. 1991 edition.

Building Thinking Classrooms in Mathematics, Grades K-12

Building Thinking Classrooms in Mathematics, Grades K-12 PDF Author: Peter Liljedahl
Publisher: Corwin Press
ISBN: 1544374844
Category : Education
Languages : en
Pages : 454

Get Book Here

Book Description
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.

Essential Mathematics for Games and Interactive Applications

Essential Mathematics for Games and Interactive Applications PDF Author: James M. Van Verth
Publisher: CRC Press
ISBN: 0123742978
Category : Art
Languages : en
Pages : 706

Get Book Here

Book Description
Essential Mathematics for Games and Interactive Applications, 2nd edition presents the core mathematics necessary for sophisticated 3D graphics and interactive physical simulations. The book begins with linear algebra and matrix multiplication and expands on this foundation to cover such topics as color and lighting, interpolation, animation and basic game physics. Essential Mathematics focuses on the issues of 3D game development important to programmers and includes optimization guidance throughout. The new edition Windows code will now use Visual Studio.NET. There will also be DirectX support provided, along with OpenGL - due to its cross-platform nature. Programmers will find more concrete examples included in this edition, as well as additional information on tuning, optimization and robustness. The book has a companion CD-ROM with exercises and a test bank for the academic secondary market, and for main market: code examples built around a shared code base, including a math library covering all the topics presented in the book, a core vector/matrix math engine, and libraries to support basic 3D rendering and interaction.