Engineering Applications of Noncommutative Harmonic Analysis

Engineering Applications of Noncommutative Harmonic Analysis PDF Author: Gregory S. Chirikjian
Publisher: CRC Press
ISBN: 1420041762
Category : Computers
Languages : en
Pages : 698

Get Book Here

Book Description
The classical Fourier transform is one of the most widely used mathematical tools in engineering. However, few engineers know that extensions of harmonic analysis to functions on groups holds great potential for solving problems in robotics, image analysis, mechanics, and other areas. For those that may be aware of its potential value, there is sti

Engineering Applications of Noncommutative Harmonic Analysis

Engineering Applications of Noncommutative Harmonic Analysis PDF Author: Gregory S. Chirikjian
Publisher: CRC Press
ISBN: 1420041762
Category : Computers
Languages : en
Pages : 698

Get Book Here

Book Description
The classical Fourier transform is one of the most widely used mathematical tools in engineering. However, few engineers know that extensions of harmonic analysis to functions on groups holds great potential for solving problems in robotics, image analysis, mechanics, and other areas. For those that may be aware of its potential value, there is sti

Non-commutative Analysis

Non-commutative Analysis PDF Author: Palle Jorgensen
Publisher: World Scientific
ISBN: 9813202149
Category : Mathematics
Languages : en
Pages : 562

Get Book Here

Book Description
'This is a book to be read and worked with. For a beginning graduate student, this can be a valuable experience which at some points in fact leads up to recent research. For such a reader there is also historical information included and many comments aiming at an overview. It is inspiring and original how old material is combined and mixed with new material. There is always something unexpected included in each chapter, which one is thankful to see explained in this context and not only in research papers which are more difficult to access.'Mathematical Reviews ClippingsThe book features new directions in analysis, with an emphasis on Hilbert space, mathematical physics, and stochastic processes. We interpret 'non-commutative analysis' broadly to include representations of non-Abelian groups, and non-Abelian algebras; emphasis on Lie groups and operator algebras (C* algebras and von Neumann algebras.)A second theme is commutative and non-commutative harmonic analysis, spectral theory, operator theory and their applications. The list of topics includes shift invariant spaces, group action in differential geometry, and frame theory (over-complete bases) and their applications to engineering (signal processing and multiplexing), projective multi-resolutions, and free probability algebras.The book serves as an accessible introduction, offering a timeless presentation, attractive and accessible to students, both in mathematics and in neighboring fields.

The Scope and History of Commutative and Noncommutative Harmonic Analysis

The Scope and History of Commutative and Noncommutative Harmonic Analysis PDF Author: George W. Mackey
Publisher: American Mathematical Soc.
ISBN: 9780821890448
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
''When I was invited to speak at the conference on the history of analysis given at Rice University [in 1977], I decided that it might be interesting to review the history of mathematics and physics in the last three hundred years or so with heavy emphasis on those parts in which harmonic analysis had played a decisive or at least a major role. I was pleased and somewhat astonished to find how much of both subjects could be included under this rubric ... The picture that gradually emerged as the various details fell into place was one that I found very beautiful, and the process of seeing it do so left me in an almost constant state of euphoria. I would like to believe that others can be led to see this picture by reading my paper, and to facilitate this I have included a large number of short expositions of topics which are not widely understood by non-specialists.'' --from the Preface This volume, containing the paper mentioned above as well as five other reprinted papers by Mackey, presents a sweeping view of the importance, utility, and beauty of harmonic analysis and its connections to other areas of mathematics and science. A seventh paper, written exclusively for this volume, attempts to unify certain themes that emerged after major discoveries in 1967 and 1968 in the areas of Lie algebras, strong interaction physics, statistical mechanics, and nonlinear partial differential equations--discoveries that may at first glance appear to be independent, but which are in fact deeply interrelated. Information for our distributors: Copublished with the London Mathematical Society beginning with volume 4. Members of the LMS may order directly from the AMS at the AMS member price. The LMS is registered with the Charity Commissioners.

Noncommutative Microlocal Analysis

Noncommutative Microlocal Analysis PDF Author: Michael Eugene Taylor
Publisher: American Mathematical Soc.
ISBN: 0821823140
Category : Differential equations, Hypoelliptic
Languages : en
Pages : 188

Get Book Here

Book Description


Free Random Variables

Free Random Variables PDF Author: Dan V. Voiculescu
Publisher: American Mathematical Soc.
ISBN: 0821811401
Category : Mathematics
Languages : en
Pages : 80

Get Book Here

Book Description
This book presents the first comprehensive introduction to free probability theory, a highly noncommutative probability theory with independence based on free products instead of tensor products. Basic examples of this kind of theory are provided by convolution operators on free groups and by the asymptotic behavior of large Gaussian random matrices. The probabilistic approach to free products has led to a recent surge of new results on the von Neumann algebras of free groups. The book is ideally suited as a textbook for an advanced graduate course and could also provide material for a seminar. In addition to researchers and graduate students in mathematics, this book will be of interest to physicists and others who use random matrices.

Noncommutative Geometry

Noncommutative Geometry PDF Author: Alain Connes
Publisher: Springer
ISBN: 3540397027
Category : Mathematics
Languages : en
Pages : 364

Get Book Here

Book Description
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.

Non-Commutative Harmonic Analysis

Non-Commutative Harmonic Analysis PDF Author: Raymond C. Fabec
Publisher:
ISBN: 9780991326600
Category : Fourier analysis
Languages : en
Pages : 529

Get Book Here

Book Description
This is a graduate text on harmonic analysis. It begins with a chapter on Fourier series. The next two chapters are spent covering function theory on real spaces and the classical Fourier transform. Following this is a chapter covering the Paley-Wiener Theorem, distributions, convolution, the Sobolev Lemma, the Shannon Sampling Theorem, windowed and wavelet transforms, and the Poisson summation formula. The later chapters deal with non-commutative theory. Topics include abstract homogeneous spaces and fundamentals of representation theory. These are used in the last two chapters. The first covers the Heisenberg group which encode the Heisenberg uncertainty principle. This is first instance of the use of infinite dimensional representations. The last covers the basic theory of compact groups. Here finite dimensionality is sufficient. Spherical functions and Gelfand pairs are discussed. There is also a section on finite groups. The text is interspersed with over 50 exercise sets that range in difficulty from basic to challenging. The text should be useful to graduate students in mathematics, physics, and engineering.

Explorations in Harmonic Analysis

Explorations in Harmonic Analysis PDF Author: Steven G. Krantz
Publisher: Springer Science & Business Media
ISBN: 0817646698
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis.

Noncommutative Harmonic Analysis with Applications to Probability

Noncommutative Harmonic Analysis with Applications to Probability PDF Author: Marek Bożejko
Publisher:
ISBN:
Category : Free probability theory
Languages : en
Pages : 334

Get Book Here

Book Description


Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives PDF Author: Alain Connes
Publisher: American Mathematical Soc.
ISBN: 1470450453
Category : Mathematics
Languages : en
Pages : 810

Get Book Here

Book Description
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.