Author: Joseph P. S. Kung
Publisher: Cambridge University Press
ISBN: 052188389X
Category : Mathematics
Languages : en
Pages : 409
Book Description
Compiled and edited by two of Gian-Carlo Rota's students, this book is based on notes from his influential combinatorics courses.
Combinatorics: The Rota Way
Author: Joseph P. S. Kung
Publisher: Cambridge University Press
ISBN: 052188389X
Category : Mathematics
Languages : en
Pages : 409
Book Description
Compiled and edited by two of Gian-Carlo Rota's students, this book is based on notes from his influential combinatorics courses.
Publisher: Cambridge University Press
ISBN: 052188389X
Category : Mathematics
Languages : en
Pages : 409
Book Description
Compiled and edited by two of Gian-Carlo Rota's students, this book is based on notes from his influential combinatorics courses.
Indiscrete Thoughts
Author: Gian-Carlo Rota
Publisher: Springer Science & Business Media
ISBN: 0817647813
Category : Mathematics
Languages : en
Pages : 299
Book Description
Indiscrete Thoughts gives a glimpse into a world that has seldom been described - that of science and technology as seen through the eyes of a mathematician. The era covered by this book, 1950 to 1990, was surely one of the golden ages of science and of the American university. Cherished myths are debunked along the way as Gian-Carlo Rota takes pleasure in portraying, warts and all, some of the great scientific personalities of the period. Rota is not afraid of controversy. Some readers may even consider these essays indiscreet. This beautifully written book is destined to become an instant classic and the subject of debate for decades to come.
Publisher: Springer Science & Business Media
ISBN: 0817647813
Category : Mathematics
Languages : en
Pages : 299
Book Description
Indiscrete Thoughts gives a glimpse into a world that has seldom been described - that of science and technology as seen through the eyes of a mathematician. The era covered by this book, 1950 to 1990, was surely one of the golden ages of science and of the American university. Cherished myths are debunked along the way as Gian-Carlo Rota takes pleasure in portraying, warts and all, some of the great scientific personalities of the period. Rota is not afraid of controversy. Some readers may even consider these essays indiscreet. This beautifully written book is destined to become an instant classic and the subject of debate for decades to come.
Combinatorics: The Art of Counting
Author: Bruce E. Sagan
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 328
Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 328
Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Gian-Carlo Rota on Analysis and Probability
Author: Jean Dhombres
Publisher: Springer Science & Business Media
ISBN: 9780817642754
Category : Mathematics
Languages : en
Pages : 424
Book Description
Gian-Carlo Rota was born in Vigevano, Italy, in 1932. He died in Cambridge, Mas sachusetts, in 1999. He had several careers, most notably as a mathematician, but also as a philosopher and a consultant to the United States government. His mathe matical career was equally varied. His early mathematical studies were at Princeton (1950 to 1953) and Yale (1953 to 1956). In 1956, he completed his doctoral thesis under the direction of Jacob T. Schwartz. This thesis was published as the pa per "Extension theory of differential operators I", the first paper reprinted in this volume. Rota's early work was in analysis, more specifically, in operator theory, differ ential equations, ergodic theory, and probability theory. In the 1960's, Rota was motivated by problems in fluctuation theory to study some operator identities of Glen Baxter (see [7]). Together with other problems in probability theory, this led Rota to study combinatorics. His series of papers, "On the foundations of combi natorial theory", led to a fundamental re-evaluation of the subject. Later, in the 1990's, Rota returned to some of the problems in analysis and probability theory which motivated his work in combinatorics. This was his intention all along, and his early death robbed mathematics of his unique perspective on linkages between the discrete and the continuous. Glimpses of his new research programs can be found in [2,3,6,9,10].
Publisher: Springer Science & Business Media
ISBN: 9780817642754
Category : Mathematics
Languages : en
Pages : 424
Book Description
Gian-Carlo Rota was born in Vigevano, Italy, in 1932. He died in Cambridge, Mas sachusetts, in 1999. He had several careers, most notably as a mathematician, but also as a philosopher and a consultant to the United States government. His mathe matical career was equally varied. His early mathematical studies were at Princeton (1950 to 1953) and Yale (1953 to 1956). In 1956, he completed his doctoral thesis under the direction of Jacob T. Schwartz. This thesis was published as the pa per "Extension theory of differential operators I", the first paper reprinted in this volume. Rota's early work was in analysis, more specifically, in operator theory, differ ential equations, ergodic theory, and probability theory. In the 1960's, Rota was motivated by problems in fluctuation theory to study some operator identities of Glen Baxter (see [7]). Together with other problems in probability theory, this led Rota to study combinatorics. His series of papers, "On the foundations of combi natorial theory", led to a fundamental re-evaluation of the subject. Later, in the 1990's, Rota returned to some of the problems in analysis and probability theory which motivated his work in combinatorics. This was his intention all along, and his early death robbed mathematics of his unique perspective on linkages between the discrete and the continuous. Glimpses of his new research programs can be found in [2,3,6,9,10].
Analytic Combinatorics
Author: Philippe Flajolet
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825
Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825
Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
A First Course in Enumerative Combinatorics
Author: Carl G. Wagner
Publisher: American Mathematical Soc.
ISBN: 1470459957
Category : Education
Languages : en
Pages : 293
Book Description
A First Course in Enumerative Combinatorics provides an introduction to the fundamentals of enumeration for advanced undergraduates and beginning graduate students in the mathematical sciences. The book offers a careful and comprehensive account of the standard tools of enumeration—recursion, generating functions, sieve and inversion formulas, enumeration under group actions—and their application to counting problems for the fundamental structures of discrete mathematics, including sets and multisets, words and permutations, partitions of sets and integers, and graphs and trees. The author's exposition has been strongly influenced by the work of Rota and Stanley, highlighting bijective proofs, partially ordered sets, and an emphasis on organizing the subject under various unifying themes, including the theory of incidence algebras. In addition, there are distinctive chapters on the combinatorics of finite vector spaces, a detailed account of formal power series, and combinatorial number theory. The reader is assumed to have a knowledge of basic linear algebra and some familiarity with power series. There are over 200 well-designed exercises ranging in difficulty from straightforward to challenging. There are also sixteen large-scale honors projects on special topics appearing throughout the text. The author is a distinguished combinatorialist and award-winning teacher, and he is currently Professor Emeritus of Mathematics and Adjunct Professor of Philosophy at the University of Tennessee. He has published widely in number theory, combinatorics, probability, decision theory, and formal epistemology. His Erdős number is 2.
Publisher: American Mathematical Soc.
ISBN: 1470459957
Category : Education
Languages : en
Pages : 293
Book Description
A First Course in Enumerative Combinatorics provides an introduction to the fundamentals of enumeration for advanced undergraduates and beginning graduate students in the mathematical sciences. The book offers a careful and comprehensive account of the standard tools of enumeration—recursion, generating functions, sieve and inversion formulas, enumeration under group actions—and their application to counting problems for the fundamental structures of discrete mathematics, including sets and multisets, words and permutations, partitions of sets and integers, and graphs and trees. The author's exposition has been strongly influenced by the work of Rota and Stanley, highlighting bijective proofs, partially ordered sets, and an emphasis on organizing the subject under various unifying themes, including the theory of incidence algebras. In addition, there are distinctive chapters on the combinatorics of finite vector spaces, a detailed account of formal power series, and combinatorial number theory. The reader is assumed to have a knowledge of basic linear algebra and some familiarity with power series. There are over 200 well-designed exercises ranging in difficulty from straightforward to challenging. There are also sixteen large-scale honors projects on special topics appearing throughout the text. The author is a distinguished combinatorialist and award-winning teacher, and he is currently Professor Emeritus of Mathematics and Adjunct Professor of Philosophy at the University of Tennessee. He has published widely in number theory, combinatorics, probability, decision theory, and formal epistemology. His Erdős number is 2.
Combinatorial Species and Tree-like Structures
Author: François Bergeron
Publisher: Cambridge University Press
ISBN: 9780521573238
Category : Mathematics
Languages : en
Pages : 484
Book Description
The combinatorial theory of species, introduced by Joyal in 1980, provides a unified understanding of the use of generating functions for both labelled and unlabelled structures and as a tool for the specification and analysis of these structures. Of particular importance is their capacity to transform recursive definitions of tree-like structures into functional or differential equations, and vice versa. The goal of this book is to present the basic elements of the theory and to give a unified account of its developments and applications. It offers a modern introduction to the use of various generating functions, with applications to graphical enumeration, Polya theory and analysis of data structures in computer science, and to other areas such as special functions, functional equations, asymptotic analysis and differential equations. This book will be a valuable reference to graduate students and researchers in combinatorics, analysis, and theoretical computer science.
Publisher: Cambridge University Press
ISBN: 9780521573238
Category : Mathematics
Languages : en
Pages : 484
Book Description
The combinatorial theory of species, introduced by Joyal in 1980, provides a unified understanding of the use of generating functions for both labelled and unlabelled structures and as a tool for the specification and analysis of these structures. Of particular importance is their capacity to transform recursive definitions of tree-like structures into functional or differential equations, and vice versa. The goal of this book is to present the basic elements of the theory and to give a unified account of its developments and applications. It offers a modern introduction to the use of various generating functions, with applications to graphical enumeration, Polya theory and analysis of data structures in computer science, and to other areas such as special functions, functional equations, asymptotic analysis and differential equations. This book will be a valuable reference to graduate students and researchers in combinatorics, analysis, and theoretical computer science.
Combinatorics, Words and Symbolic Dynamics
Author: Valérie Berthé
Publisher: Cambridge University Press
ISBN: 1107077028
Category : Computers
Languages : en
Pages : 496
Book Description
Surveys trends arising from the applications and interactions between combinatorics, symbolic dynamics and theoretical computer science.
Publisher: Cambridge University Press
ISBN: 1107077028
Category : Computers
Languages : en
Pages : 496
Book Description
Surveys trends arising from the applications and interactions between combinatorics, symbolic dynamics and theoretical computer science.
The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics
Author: James Haglund
Publisher: American Mathematical Soc.
ISBN: 0821844113
Category : Mathematics
Languages : en
Pages : 178
Book Description
This work contains detailed descriptions of developments in the combinatorics of the space of diagonal harmonics, a topic at the forefront of current research in algebraic combinatorics. These developments have led in turn to some surprising discoveries in the combinatorics of Macdonald polynomials.
Publisher: American Mathematical Soc.
ISBN: 0821844113
Category : Mathematics
Languages : en
Pages : 178
Book Description
This work contains detailed descriptions of developments in the combinatorics of the space of diagonal harmonics, a topic at the forefront of current research in algebraic combinatorics. These developments have led in turn to some surprising discoveries in the combinatorics of Macdonald polynomials.
Combinatorial Theory
Author: Martin Aigner
Publisher: Springer Science & Business Media
ISBN: 3642591019
Category : Mathematics
Languages : en
Pages : 493
Book Description
This book offers a well-organized, easy-to-follow introduction to combinatorial theory, with examples, notes and exercises. ". . . a very good introduction to combinatorics. This book can warmly be recommended first of all to students interested in combinatorics." Publicationes Mathematicae Debrecen
Publisher: Springer Science & Business Media
ISBN: 3642591019
Category : Mathematics
Languages : en
Pages : 493
Book Description
This book offers a well-organized, easy-to-follow introduction to combinatorial theory, with examples, notes and exercises. ". . . a very good introduction to combinatorics. This book can warmly be recommended first of all to students interested in combinatorics." Publicationes Mathematicae Debrecen