Combinatorics: A Guided Tour

Combinatorics: A Guided Tour PDF Author: David R. Mazur
Publisher: American Mathematical Soc.
ISBN: 1470453002
Category : Education
Languages : en
Pages : 411

Get Book Here

Book Description
Combinatorics is mathematics of enumeration, existence, construction, and optimization questions concerning finite sets. This text focuses on the first three types of questions and covers basic counting and existence principles, distributions, generating functions, recurrence relations, Pólya theory, combinatorial designs, error correcting codes, partially ordered sets, and selected applications to graph theory including the enumeration of trees, the chromatic polynomial, and introductory Ramsey theory. The only prerequisites are single-variable calculus and familiarity with sets and basic proof techniques. The text emphasizes the brands of thinking that are characteristic of combinatorics: bijective and combinatorial proofs, recursive analysis, and counting problem classification. It is flexible enough to be used for undergraduate courses in combinatorics, second courses in discrete mathematics, introductory graduate courses in applied mathematics programs, as well as for independent study or reading courses. What makes this text a guided tour are the approximately 350 reading questions spread throughout its eight chapters. These questions provide checkpoints for learning and prepare the reader for the end-of-section exercises of which there are over 470. Most sections conclude with Travel Notes that add color to the material of the section via anecdotes, open problems, suggestions for further reading, and biographical information about mathematicians involved in the discoveries.

Combinatorics: A Guided Tour

Combinatorics: A Guided Tour PDF Author: David R. Mazur
Publisher: American Mathematical Soc.
ISBN: 1470453002
Category : Education
Languages : en
Pages : 411

Get Book Here

Book Description
Combinatorics is mathematics of enumeration, existence, construction, and optimization questions concerning finite sets. This text focuses on the first three types of questions and covers basic counting and existence principles, distributions, generating functions, recurrence relations, Pólya theory, combinatorial designs, error correcting codes, partially ordered sets, and selected applications to graph theory including the enumeration of trees, the chromatic polynomial, and introductory Ramsey theory. The only prerequisites are single-variable calculus and familiarity with sets and basic proof techniques. The text emphasizes the brands of thinking that are characteristic of combinatorics: bijective and combinatorial proofs, recursive analysis, and counting problem classification. It is flexible enough to be used for undergraduate courses in combinatorics, second courses in discrete mathematics, introductory graduate courses in applied mathematics programs, as well as for independent study or reading courses. What makes this text a guided tour are the approximately 350 reading questions spread throughout its eight chapters. These questions provide checkpoints for learning and prepare the reader for the end-of-section exercises of which there are over 470. Most sections conclude with Travel Notes that add color to the material of the section via anecdotes, open problems, suggestions for further reading, and biographical information about mathematicians involved in the discoveries.

Combinatorics

Combinatorics PDF Author: David R. Mazur
Publisher: MAA
ISBN: 9780883857625
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
A introductory guide to combinatorics, including reading questions and end-of-section exercises, suitable for undergraduate and graduate courses.

Combinatorics

Combinatorics PDF Author: David R. Mazur
Publisher: American Mathematical Society
ISBN: 1470472864
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
Combinatorics is mathematics of enumeration, existence, construction, and optimization questions concerning finite sets. This text focuses on the first three types of questions and covers basic counting and existence principles, distributions, generating functions, recurrence relations, Pólya theory, combinatorial designs, error correcting codes, partially ordered sets, and selected applications to graph theory including the enumeration of trees, the chromatic polynomial, and introductory Ramsey theory. The only prerequisites are single-variable calculus and familiarity with sets and basic proof techniques. The text emphasizes the brands of thinking that are characteristic of combinatorics: bijective and combinatorial proofs, recursive analysis, and counting problem classification. It is flexible enough to be used for undergraduate courses in combinatorics, second courses in discrete mathematics, introductory graduate courses in applied mathematics programs, as well as for independent study or reading courses. What makes this text a guided tour are the approximately 350 reading questions spread throughout its eight chapters. These questions provide checkpoints for learning and prepare the reader for the end-of-section exercises of which there are over 470. Most sections conclude with Travel Notes that add color to the material of the section via anecdotes, open problems, suggestions for further reading, and biographical information about mathematicians involved in the discoveries.

A Course in Combinatorics

A Course in Combinatorics PDF Author: J. H. van Lint
Publisher: Cambridge University Press
ISBN: 9780521006019
Category : Mathematics
Languages : en
Pages : 620

Get Book Here

Book Description
This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.

Combinatorics of Permutations

Combinatorics of Permutations PDF Author: Miklos Bona
Publisher: CRC Press
ISBN: 1439850526
Category : Computers
Languages : en
Pages : 478

Get Book Here

Book Description
A Unified Account of Permutations in Modern CombinatoricsA 2006 CHOICE Outstanding Academic Title, the first edition of this bestseller was lauded for its detailed yet engaging treatment of permutations. Providing more than enough material for a one-semester course, Combinatorics of Permutations, Second Edition continues to clearly show the usefuln

Applied Combinatorics

Applied Combinatorics PDF Author: Alan Tucker
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
"T. 1. Graph Theory. 1. Ch. 1. Elements of Graph Theory. 3. Ch. 2. Covering Circuits and Graph Coloring. 53. Ch. 3. Trees and Searching. 95. Ch. 4. Network Algorithms. 129. Pt. 2. Enumeration. 167. Ch. 5. General Counting Methods for Arrangements and Selections. 169. Ch. 6. Generating Functions. 241. Ch. 7. Recurrence Relations. 273. Ch. 8. Inclusion-Exclusion. 309. Pt. 3. Additional Topics. 341. Ch. 9. Polya's Enumeration Formula. 343. Ch. 10. Games with Graphs. 371. . Appendix. 387. . Glossary of Counting and Graph Theory Terms. 403. . Bibliography. 407. . Solutions to Odd-Numbered Problems. 409. . Index. 441.

Perspectives on Projective Geometry

Perspectives on Projective Geometry PDF Author: Jürgen Richter-Gebert
Publisher: Springer Science & Business Media
ISBN: 3642172865
Category : Mathematics
Languages : en
Pages : 573

Get Book Here

Book Description
Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.

Mathematics of Choice

Mathematics of Choice PDF Author: Ivan Niven
Publisher: MAA
ISBN: 0883856158
Category : Mathematics
Languages : en
Pages : 215

Get Book Here

Book Description


Combinatorics

Combinatorics PDF Author: Peter Jephson Cameron
Publisher: Cambridge University Press
ISBN: 9780521457613
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
Combinatorics is a subject of increasing importance because of its links with computer science, statistics, and algebra. This textbook stresses common techniques (such as generating functions and recursive construction) that underlie the great variety of subject matter, and the fact that a constructive or algorithmic proof is more valuable than an existence proof. The author emphasizes techniques as well as topics and includes many algorithms described in simple terms. The text should provide essential background for students in all parts of discrete mathematics.

Combinatorics for Computer Science

Combinatorics for Computer Science PDF Author: Stanley Gill Williamson
Publisher: Courier Corporation
ISBN: 9780486420769
Category : Mathematics
Languages : en
Pages : 548

Get Book Here

Book Description
Useful guide covers two major subdivisions of combinatorics — enumeration and graph theory — with emphasis on conceptual needs of computer science. Each part is divided into a "basic concepts" chapter emphasizing intuitive needs of the subject, followed by four "topics" chapters that explore these ideas in depth. Invaluable practical resource for graduate students, advanced undergraduates, and professionals with an interest in algorithm design and other aspects of computer science and combinatorics. References for Linear Order & for Graphs, Trees, and Recursions. 219 figures.