Author: Hongling Yu
Publisher: Linköping University Electronic Press
ISBN: 9179298095
Category : Electronic books
Languages : en
Pages : 72
Book Description
Metal halide perovskites (MHPs) are recognized as promising semiconductor materials for a variety of optical and electrical device applications due to their cost-effective and outstanding optoelectronic properties. As one of the most significant applications, perovskite light-emitting diodes (PeLEDs) hold promise for future lighting and display technologies, attributed to their high photoluminescence quantum yield (PLQY), high color purity, and tunable emission color. The emission colors of PeLEDs can be tuned by mixing the halide anions, adjusting the size of perovskite nanocrystals, or changing the dimensionality of perovskites. However, in practice, all these different approaches have their own advantages and challenges. This thesis centres around the color tunability of perovskites, aiming to develop PeLEDs with different colors using different approaches. We first demonstrate red and near-infrared PeLEDs using a straightforward approach – in situ solution-processed perovskite quantum dots (PQDs). PQDs prepared from colloidal approaches are widely reported and used in LEDs. In contrast, PQDs prepared from the in situ approaches are hardly reported, although they have advantages for device applications. By employing aromatic ammonium iodide (1-naphthylmethyl ammonium iodide, NMAI) as an agent into perovskite precursor solutions, together with annealing temperature modulation, we obtain in situ grown PQDs delivering high external quantum efficiencies (EQEs) of up to 11.0% with tunable electroluminescence (EL) spectra (667 - 790 nm). Our in situ generated PQDs based on pure-halogen perovskites can be easily obtained through a simple deposition process and free of phase segregation, making them a more promising approach for tuning the emission colors of perovskite LEDs. We then move to blue PeLEDs using cesium-based mixed-Br/Cl perovskites. Although mixed halides are a straightforward strategy to tune the emission color, PeLEDs based on this approach suffer from poor color stability, which is attributed to surface defects at grain boundaries. Under the condition of optical excitations, light density over a certain value (a threshold), oxygen, and surface defects at perovskite grain boundaries are found to be key factors inducing photoluminescence (PL) spectral instability of CsPb(Br1?xClx)3 perovskites. Upon electrical bias, defects at grain boundaries provide undesirable halide migration channels, responsible for EL spectral instability issues. Through effective defect passivation, the PL spectral resistance to oxygen is enhanced; moreover, high-performance and color-stable blue PeLEDs are achieved, delivering a maximum luminance of 5351 cd m–2 and a peak EQE of 4.55% with a peak emission wavelength at 489 nm. These findings provide new insights into the color instability issue of mixed halide blue perovskites, against which we also demonstrate an effective strategy. We finally realize single-emissive-layer (EML) white PeLEDs by employing a mixed halide perovskite film as the EML. In spite of high-performance monochromatic blue, green, and red colors, the development of white PeLEDs, especially for single-EML ones, remains a very big challenge. By effective modulation of the halide salt precursors, we achieve single-EML white PeLEDs with Commission Internationale de L’Eclairage (CIE) coordinates of (0.33, 0.33), close to those (0.3128, 0.3290) of the CIE standard illuminant D65. This work not only provides a successful demonstration of a single-EML white PeLED, but also provides useful guidelines for the future development of highperformance single-EML white PeLEDs.
Color Tuning for Perovskite Light-Emitting Diodes
Author: Hongling Yu
Publisher: Linköping University Electronic Press
ISBN: 9179298095
Category : Electronic books
Languages : en
Pages : 72
Book Description
Metal halide perovskites (MHPs) are recognized as promising semiconductor materials for a variety of optical and electrical device applications due to their cost-effective and outstanding optoelectronic properties. As one of the most significant applications, perovskite light-emitting diodes (PeLEDs) hold promise for future lighting and display technologies, attributed to their high photoluminescence quantum yield (PLQY), high color purity, and tunable emission color. The emission colors of PeLEDs can be tuned by mixing the halide anions, adjusting the size of perovskite nanocrystals, or changing the dimensionality of perovskites. However, in practice, all these different approaches have their own advantages and challenges. This thesis centres around the color tunability of perovskites, aiming to develop PeLEDs with different colors using different approaches. We first demonstrate red and near-infrared PeLEDs using a straightforward approach – in situ solution-processed perovskite quantum dots (PQDs). PQDs prepared from colloidal approaches are widely reported and used in LEDs. In contrast, PQDs prepared from the in situ approaches are hardly reported, although they have advantages for device applications. By employing aromatic ammonium iodide (1-naphthylmethyl ammonium iodide, NMAI) as an agent into perovskite precursor solutions, together with annealing temperature modulation, we obtain in situ grown PQDs delivering high external quantum efficiencies (EQEs) of up to 11.0% with tunable electroluminescence (EL) spectra (667 - 790 nm). Our in situ generated PQDs based on pure-halogen perovskites can be easily obtained through a simple deposition process and free of phase segregation, making them a more promising approach for tuning the emission colors of perovskite LEDs. We then move to blue PeLEDs using cesium-based mixed-Br/Cl perovskites. Although mixed halides are a straightforward strategy to tune the emission color, PeLEDs based on this approach suffer from poor color stability, which is attributed to surface defects at grain boundaries. Under the condition of optical excitations, light density over a certain value (a threshold), oxygen, and surface defects at perovskite grain boundaries are found to be key factors inducing photoluminescence (PL) spectral instability of CsPb(Br1?xClx)3 perovskites. Upon electrical bias, defects at grain boundaries provide undesirable halide migration channels, responsible for EL spectral instability issues. Through effective defect passivation, the PL spectral resistance to oxygen is enhanced; moreover, high-performance and color-stable blue PeLEDs are achieved, delivering a maximum luminance of 5351 cd m–2 and a peak EQE of 4.55% with a peak emission wavelength at 489 nm. These findings provide new insights into the color instability issue of mixed halide blue perovskites, against which we also demonstrate an effective strategy. We finally realize single-emissive-layer (EML) white PeLEDs by employing a mixed halide perovskite film as the EML. In spite of high-performance monochromatic blue, green, and red colors, the development of white PeLEDs, especially for single-EML ones, remains a very big challenge. By effective modulation of the halide salt precursors, we achieve single-EML white PeLEDs with Commission Internationale de L’Eclairage (CIE) coordinates of (0.33, 0.33), close to those (0.3128, 0.3290) of the CIE standard illuminant D65. This work not only provides a successful demonstration of a single-EML white PeLED, but also provides useful guidelines for the future development of highperformance single-EML white PeLEDs.
Publisher: Linköping University Electronic Press
ISBN: 9179298095
Category : Electronic books
Languages : en
Pages : 72
Book Description
Metal halide perovskites (MHPs) are recognized as promising semiconductor materials for a variety of optical and electrical device applications due to their cost-effective and outstanding optoelectronic properties. As one of the most significant applications, perovskite light-emitting diodes (PeLEDs) hold promise for future lighting and display technologies, attributed to their high photoluminescence quantum yield (PLQY), high color purity, and tunable emission color. The emission colors of PeLEDs can be tuned by mixing the halide anions, adjusting the size of perovskite nanocrystals, or changing the dimensionality of perovskites. However, in practice, all these different approaches have their own advantages and challenges. This thesis centres around the color tunability of perovskites, aiming to develop PeLEDs with different colors using different approaches. We first demonstrate red and near-infrared PeLEDs using a straightforward approach – in situ solution-processed perovskite quantum dots (PQDs). PQDs prepared from colloidal approaches are widely reported and used in LEDs. In contrast, PQDs prepared from the in situ approaches are hardly reported, although they have advantages for device applications. By employing aromatic ammonium iodide (1-naphthylmethyl ammonium iodide, NMAI) as an agent into perovskite precursor solutions, together with annealing temperature modulation, we obtain in situ grown PQDs delivering high external quantum efficiencies (EQEs) of up to 11.0% with tunable electroluminescence (EL) spectra (667 - 790 nm). Our in situ generated PQDs based on pure-halogen perovskites can be easily obtained through a simple deposition process and free of phase segregation, making them a more promising approach for tuning the emission colors of perovskite LEDs. We then move to blue PeLEDs using cesium-based mixed-Br/Cl perovskites. Although mixed halides are a straightforward strategy to tune the emission color, PeLEDs based on this approach suffer from poor color stability, which is attributed to surface defects at grain boundaries. Under the condition of optical excitations, light density over a certain value (a threshold), oxygen, and surface defects at perovskite grain boundaries are found to be key factors inducing photoluminescence (PL) spectral instability of CsPb(Br1?xClx)3 perovskites. Upon electrical bias, defects at grain boundaries provide undesirable halide migration channels, responsible for EL spectral instability issues. Through effective defect passivation, the PL spectral resistance to oxygen is enhanced; moreover, high-performance and color-stable blue PeLEDs are achieved, delivering a maximum luminance of 5351 cd m–2 and a peak EQE of 4.55% with a peak emission wavelength at 489 nm. These findings provide new insights into the color instability issue of mixed halide blue perovskites, against which we also demonstrate an effective strategy. We finally realize single-emissive-layer (EML) white PeLEDs by employing a mixed halide perovskite film as the EML. In spite of high-performance monochromatic blue, green, and red colors, the development of white PeLEDs, especially for single-EML ones, remains a very big challenge. By effective modulation of the halide salt precursors, we achieve single-EML white PeLEDs with Commission Internationale de L’Eclairage (CIE) coordinates of (0.33, 0.33), close to those (0.3128, 0.3290) of the CIE standard illuminant D65. This work not only provides a successful demonstration of a single-EML white PeLED, but also provides useful guidelines for the future development of highperformance single-EML white PeLEDs.
Halide Perovskites
Author: Tze-Chien Sum
Publisher: John Wiley & Sons
ISBN: 3527341110
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.
Publisher: John Wiley & Sons
ISBN: 3527341110
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.
Advanced Nanomaterials for Solar Cells and Light Emitting Diodes
Author: Feng Gao
Publisher: Elsevier
ISBN: 0128136480
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Advanced Nanomaterials for Solar Cells and Light Emitting Diodes discusses the importance of nanomaterials as the active layers in solar cells and light emitting diodes (LEDs), along with the progress of nanomaterials as the electron and hole transporting layers. Specifically, the book reviews the use of nano-morphology of polymers, small molecules, and the organic-inorganic perovskites as the active layers in solar cells and LEDs. The design, fabrication and properties of metal-oxide-based nano-structures as electron and hole transporting layers are also reviewed. In addition, the development of plasmonic nanomaterials for solar cells and LEDs is discussed. Each topic in this book includes an overview of the materials system from principles to process. The advantages, disadvantages and related methodologies are highlighted. The book includes applications based on materials and emphasize how to improve the performance of solar cells and LEDs by the materials design, with a focus on nanomaterials. - Provides latest research on nanostructured materials including small molecules, polymers, organic-inorganic perovskites, and many other relevant materials systems for solar cells and LEDs - Addresses each promising materials system from principles to process, detailing the advantages and disadvantages of the most relevant methods of processing and fabrication - Looks ahead to most likely techniques to improve performance of solar cells and light emitting diodes
Publisher: Elsevier
ISBN: 0128136480
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Advanced Nanomaterials for Solar Cells and Light Emitting Diodes discusses the importance of nanomaterials as the active layers in solar cells and light emitting diodes (LEDs), along with the progress of nanomaterials as the electron and hole transporting layers. Specifically, the book reviews the use of nano-morphology of polymers, small molecules, and the organic-inorganic perovskites as the active layers in solar cells and LEDs. The design, fabrication and properties of metal-oxide-based nano-structures as electron and hole transporting layers are also reviewed. In addition, the development of plasmonic nanomaterials for solar cells and LEDs is discussed. Each topic in this book includes an overview of the materials system from principles to process. The advantages, disadvantages and related methodologies are highlighted. The book includes applications based on materials and emphasize how to improve the performance of solar cells and LEDs by the materials design, with a focus on nanomaterials. - Provides latest research on nanostructured materials including small molecules, polymers, organic-inorganic perovskites, and many other relevant materials systems for solar cells and LEDs - Addresses each promising materials system from principles to process, detailing the advantages and disadvantages of the most relevant methods of processing and fabrication - Looks ahead to most likely techniques to improve performance of solar cells and light emitting diodes
Quantum-dot Based Light-emitting Diodes
Author: Morteza Sasani Ghamsari
Publisher: BoD – Books on Demand
ISBN: 9535135759
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
Quantum dot-based light emitting diodes were assigned to bringing together the latest and most important progresses in light emitting diode (LED) technologies. In addition, they were dedicated to gain the perspective of LED technology for all of its advancements and innovations due to the employment of semiconductor nanocrystals. Highly selective, the primary aim was to provide a visual source for high-urgency work that will define the future directions relating to the organic light emitting diode (OLED), with the expectation for lasting scientific and technological impact. The editor hopes that the chapters verify the realization of the mentioned aims that have been considered for editing of this book. Due to the rapidly growing OLED technology, we wish this book to be useful for any progress that can be achieved in future.
Publisher: BoD – Books on Demand
ISBN: 9535135759
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
Quantum dot-based light emitting diodes were assigned to bringing together the latest and most important progresses in light emitting diode (LED) technologies. In addition, they were dedicated to gain the perspective of LED technology for all of its advancements and innovations due to the employment of semiconductor nanocrystals. Highly selective, the primary aim was to provide a visual source for high-urgency work that will define the future directions relating to the organic light emitting diode (OLED), with the expectation for lasting scientific and technological impact. The editor hopes that the chapters verify the realization of the mentioned aims that have been considered for editing of this book. Due to the rapidly growing OLED technology, we wish this book to be useful for any progress that can be achieved in future.
Perovskite Light Emitting Diodes
Author: Hong Meng
Publisher: John Wiley & Sons
ISBN: 3527353208
Category : Technology & Engineering
Languages : en
Pages : 373
Book Description
Perovskite Light Emitting Diodes An introduction to revolutionary display technology Perovskite Light Emitting Diodes, commonly referred to as Pe-LEDs, leverage a perovskite nanocrystal core to engender a luminous and efficient diode, holding the potential to bring about a paradigm shift in the realm of display technology. In recent times, Pe-LEDs have garnered substantial industrial interest due to their intrinsic capability to exhibit a diverse array of colors with exceptional fidelity, their operation at low voltage thresholds, and their straightforward structural composition. The prospective implications for enabling cost-effective, heightened-performance flat-panel displays as well as flexible display solutions remain notably profound. Perovskite Light Emitting Diodes: Materials and Devices presents a comprehensive and insightful overview of these diodes and their multifaceted applications. Commencing with an incisive exploration of the historical trajectory of this technology, alongside a delineation of its foundational materials and intricate device architectures, this compendium provides a gateway into both contemporaneous state-of-the-art deployments and the vanguard of ongoing research endeavors directed towards charting future advancements. Perovskite Light Emitting Diodes readers will also find: Stability analysis for different Pe-LED devices, a key aspect of creating physical displays Authorship by an established expert in organic electronics Detailed discussion of perovskite preparation methods including ultrasonic, solvent heat, thermal injection, and many more Perovskite Light Emitting Diodes is ideal for materials scientists, electrical engineers, solid state chemists, solid state physicists, inorganic chemists, and any researchers or engineers working with display technology.
Publisher: John Wiley & Sons
ISBN: 3527353208
Category : Technology & Engineering
Languages : en
Pages : 373
Book Description
Perovskite Light Emitting Diodes An introduction to revolutionary display technology Perovskite Light Emitting Diodes, commonly referred to as Pe-LEDs, leverage a perovskite nanocrystal core to engender a luminous and efficient diode, holding the potential to bring about a paradigm shift in the realm of display technology. In recent times, Pe-LEDs have garnered substantial industrial interest due to their intrinsic capability to exhibit a diverse array of colors with exceptional fidelity, their operation at low voltage thresholds, and their straightforward structural composition. The prospective implications for enabling cost-effective, heightened-performance flat-panel displays as well as flexible display solutions remain notably profound. Perovskite Light Emitting Diodes: Materials and Devices presents a comprehensive and insightful overview of these diodes and their multifaceted applications. Commencing with an incisive exploration of the historical trajectory of this technology, alongside a delineation of its foundational materials and intricate device architectures, this compendium provides a gateway into both contemporaneous state-of-the-art deployments and the vanguard of ongoing research endeavors directed towards charting future advancements. Perovskite Light Emitting Diodes readers will also find: Stability analysis for different Pe-LED devices, a key aspect of creating physical displays Authorship by an established expert in organic electronics Detailed discussion of perovskite preparation methods including ultrasonic, solvent heat, thermal injection, and many more Perovskite Light Emitting Diodes is ideal for materials scientists, electrical engineers, solid state chemists, solid state physicists, inorganic chemists, and any researchers or engineers working with display technology.
World Scientific Handbook Of Organic Optoelectronic Devices (Volumes 1 & 2)
Author:
Publisher: World Scientific
ISBN: 9813239859
Category : Technology & Engineering
Languages : en
Pages : 909
Book Description
Organic (opto)electronic materials have received considerable attention due to their applications in perovskite and flexible electronics, OPVs and OLEDs and many others. Reflecting the rapid growth in research and development of organic (opto)electronic materials over the last few decades, this book provides a comprehensive coverage of the state of the art in an accessible format. It presents the most widely recognized fundamentals, principles, and mechanisms along with representative examples, key experimental data, and over 200 illustrative figures.
Publisher: World Scientific
ISBN: 9813239859
Category : Technology & Engineering
Languages : en
Pages : 909
Book Description
Organic (opto)electronic materials have received considerable attention due to their applications in perovskite and flexible electronics, OPVs and OLEDs and many others. Reflecting the rapid growth in research and development of organic (opto)electronic materials over the last few decades, this book provides a comprehensive coverage of the state of the art in an accessible format. It presents the most widely recognized fundamentals, principles, and mechanisms along with representative examples, key experimental data, and over 200 illustrative figures.
Polymers for Light-emitting Devices and Displays
Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1119654602
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.
Publisher: John Wiley & Sons
ISBN: 1119654602
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.
Perovskite Quantum Dots
Author: Ye Zhou
Publisher: Springer Nature
ISBN: 9811566372
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
This book addresses perovskite quantum dots, discussing their unique properties, synthesis, and applications in nanoscale optoelectronic and photonic devices, as well as the challenges and possible solutions in the context of device design and the prospects for commercial applications. It particularly focuses on the luminescent properties, which differ from those of the corresponding quantum dots materials, such as multicolor emission, fluorescence narrowing, and tunable and switchable emissions from doped nanostructures. The book first describes the characterization and fabrication of perovskite quantum dots. It also provides detailed methods for analyzing the electrical and optical properties, and demonstrates promising applications of perovskite quantum dots. Furthermore, it presents a series of optoelectronic and photonic devices based on functional perovskite quantum dots, and explains the incorporation of perovskite quantum dots in semiconductor devices and their effect of the performance. It also explores the challenges related to optoelectronic devices, as well as possible strategies to promote their commercialization. As such, this book is a valuable resource for graduate students and researchers in the field of solid-state materials and electronics wanting to gain a better understanding of the characteristics of quantum dots, and the fundamental optoelectronic properties and operation mechanisms of the latest perovskite quantum dot-based devices.
Publisher: Springer Nature
ISBN: 9811566372
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
This book addresses perovskite quantum dots, discussing their unique properties, synthesis, and applications in nanoscale optoelectronic and photonic devices, as well as the challenges and possible solutions in the context of device design and the prospects for commercial applications. It particularly focuses on the luminescent properties, which differ from those of the corresponding quantum dots materials, such as multicolor emission, fluorescence narrowing, and tunable and switchable emissions from doped nanostructures. The book first describes the characterization and fabrication of perovskite quantum dots. It also provides detailed methods for analyzing the electrical and optical properties, and demonstrates promising applications of perovskite quantum dots. Furthermore, it presents a series of optoelectronic and photonic devices based on functional perovskite quantum dots, and explains the incorporation of perovskite quantum dots in semiconductor devices and their effect of the performance. It also explores the challenges related to optoelectronic devices, as well as possible strategies to promote their commercialization. As such, this book is a valuable resource for graduate students and researchers in the field of solid-state materials and electronics wanting to gain a better understanding of the characteristics of quantum dots, and the fundamental optoelectronic properties and operation mechanisms of the latest perovskite quantum dot-based devices.
Multifunctional Organic–Inorganic Halide Perovskite
Author: Nam-Gyu Park
Publisher: CRC Press
ISBN: 1000562271
Category : Science
Languages : en
Pages : 240
Book Description
Perovskite is a well-known structure with the chemical formula ABX3, where A and B are cations coordinated with 12 and 6 anions, respectively, and X is an anion. When a halogen anion is used, the monovalent A and divalent B cations can be stabilized with respect to a tolerance factor ranging from ~0.8 to 1. Since the first report on ~10% efficiency and long-term stability of solid-state perovskite solar cells (PSCs) in 2012 and two subsequent seed reports on perovskite-sensitized solar cells in 2009 and 2011, PSCs have received increasing attention. The power conversion efficiency of PSCs was certified to be more than 25% in 2020, surpassing thin-film solar cell technologies. Methylammonium or formamidinium organic ion–based lead iodide perovskite has been used for high-efficiency PSCs. The first report on solid-state PSCs triggered perovskite photovoltaics, leading to more than 23,000 publications as of October 2021. In addition, halide perovskite has shown excellent performance when applied to light-emitting diodes (LEDs), photodetectors, and resistive memory, indicating that halide perovskite is multifunctional. This book explains the electro-optical and ferroelectric properties of perovskite and details the recent progress in scalable and tandem PSCs as well as perovskite LEDs and resistive memory. It is a useful textbook and self-help study guide for advanced undergraduate- and graduate-level students of materials science and engineering, chemistry, chemical engineering, and nanotechnology; for researchers in photovoltaics, LEDs, resistive memory, and perovskite-related opto-electronics; and for general readers who wish to gain knowledge about halide perovskite.
Publisher: CRC Press
ISBN: 1000562271
Category : Science
Languages : en
Pages : 240
Book Description
Perovskite is a well-known structure with the chemical formula ABX3, where A and B are cations coordinated with 12 and 6 anions, respectively, and X is an anion. When a halogen anion is used, the monovalent A and divalent B cations can be stabilized with respect to a tolerance factor ranging from ~0.8 to 1. Since the first report on ~10% efficiency and long-term stability of solid-state perovskite solar cells (PSCs) in 2012 and two subsequent seed reports on perovskite-sensitized solar cells in 2009 and 2011, PSCs have received increasing attention. The power conversion efficiency of PSCs was certified to be more than 25% in 2020, surpassing thin-film solar cell technologies. Methylammonium or formamidinium organic ion–based lead iodide perovskite has been used for high-efficiency PSCs. The first report on solid-state PSCs triggered perovskite photovoltaics, leading to more than 23,000 publications as of October 2021. In addition, halide perovskite has shown excellent performance when applied to light-emitting diodes (LEDs), photodetectors, and resistive memory, indicating that halide perovskite is multifunctional. This book explains the electro-optical and ferroelectric properties of perovskite and details the recent progress in scalable and tandem PSCs as well as perovskite LEDs and resistive memory. It is a useful textbook and self-help study guide for advanced undergraduate- and graduate-level students of materials science and engineering, chemistry, chemical engineering, and nanotechnology; for researchers in photovoltaics, LEDs, resistive memory, and perovskite-related opto-electronics; and for general readers who wish to gain knowledge about halide perovskite.
Hybrid Perovskite Composite Materials
Author: Imran Khan
Publisher: Woodhead Publishing
ISBN: 0128204001
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
Hybrid Composite Perovskite Materials: Design to Applications discusses the manufacturing, design and characterization of organic-inorganic perovskite composite materials. The book goes beyond the basics of characterization and discusses physical properties, surface morphology and environmental stability. Users will find extensive examples of real-world products that are suitable for the needs of the market. Following a logical order, the book begins with mathematical background and then covers innovative approaches to physical modeling, analysis and design techniques. Numerous examples illustrate the proposed methods and results, making this book a sound resource on the modern research application of perovskite composites with real commercial value. - Discusses the composition of perovskite materials and their properties, manufacturing and environmental stability - Includes both fundamentals and state-of-the-art developments - Features the main types of applications, including solar cells, photovoltaics, sensors and optoelectronic devices
Publisher: Woodhead Publishing
ISBN: 0128204001
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
Hybrid Composite Perovskite Materials: Design to Applications discusses the manufacturing, design and characterization of organic-inorganic perovskite composite materials. The book goes beyond the basics of characterization and discusses physical properties, surface morphology and environmental stability. Users will find extensive examples of real-world products that are suitable for the needs of the market. Following a logical order, the book begins with mathematical background and then covers innovative approaches to physical modeling, analysis and design techniques. Numerous examples illustrate the proposed methods and results, making this book a sound resource on the modern research application of perovskite composites with real commercial value. - Discusses the composition of perovskite materials and their properties, manufacturing and environmental stability - Includes both fundamentals and state-of-the-art developments - Features the main types of applications, including solar cells, photovoltaics, sensors and optoelectronic devices