Collective Phenomena in Active Brownian Particles with Feedback Controlled Interaction Rules

Collective Phenomena in Active Brownian Particles with Feedback Controlled Interaction Rules PDF Author: Tobias Doyle Bäuerle
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Collective Phenomena in Active Brownian Particles with Feedback Controlled Interaction Rules

Collective Phenomena in Active Brownian Particles with Feedback Controlled Interaction Rules PDF Author: Tobias Doyle Bäuerle
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Brownian Agents and Active Particles

Brownian Agents and Active Particles PDF Author: Frank Schweitzer
Publisher: Springer Science & Business Media
ISBN: 3540738444
Category : Business & Economics
Languages : en
Pages : 427

Get Book Here

Book Description
This book lays out a vision for a coherent framework for understanding complex systems. By developing the genuine idea of Brownian agents, the author combines concepts from informatics, such as multiagent systems, with approaches of statistical many-particle physics. It demonstrates that Brownian agent models can be successfully applied in many different contexts, ranging from physicochemical pattern formation to swarming in biological systems.

Collective Dynamics of Active Brownian Particle Systems

Collective Dynamics of Active Brownian Particle Systems PDF Author: Jens Bickmann
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Guiding Active Particles Through Surface Interactions

Guiding Active Particles Through Surface Interactions PDF Author: Jaideep Katuri
Publisher:
ISBN:
Category :
Languages : en
Pages : 235

Get Book Here

Book Description
Living organisms and systems are continually converting energy, either internally stored or transduced from their surroundings, into motion. This activity and the resulting self-propulsion constantly push these biological systems out of thermal equilibrium. A number of exotic phenomenon result from the intrinsic non-equilibrium nature of these living systems, that are not accessible in a system at thermal equilibrium. In recent years, these ubiquitous non-equilibrium systems have come to be classified as active matter. Active matter, by definition, refers to systems composed of active units, each capable of converting ambient or stored energy into systematic movement. Examples range from the sub-micrometer scale, with microtubules associated with motor proteins in the cytoplasm, to the micrometer length scales of swimming bacteria, and the meter-length scales of greater familiarity, such as that of fish and birds. There are two common themes that run through all these active matter systems. The first is the emergence of correlated collective phenomenon through particle-particle interactions as exemplified in flocking of birds, swarming of bacteria and crystallization of self-propelled particles. And the second is the ability of the active units to interact with their surroundings through self-propulsion. Common examples of this include chemotaxis and rheotaxis, observed in many biological systems. In this thesis, I have focussed on studying the ability of artificial active matter systems to respond to their local environment. As a model active matter system, we use colloidal active particles, that propel due to self-diffusiophoresis. These particles coated with two different materials on each half are referred to as Janus particles. In a solution of H2O2, one of the sides has catalytic properties (Pt), while the other half remains inert (SiO2). This creates a concentration gradient of the reaction product along the surface of the particle and induces a phoretic slip, which propels the particle. We study the dynamics of these self-phoretic particles close to solid surfaces. The particles interact with their surroundings via hydrodynamic and phoretic effects and we observe that when confined closed to a surface, a strong alignment interaction comes into play. This effect can be used to guide micron sized active particles along predetermined pathways. We then exploit this alignment interaction to design micropatterned ratchets capable of generating a strong directional flow of active particles. A different geometry of the same system can also be used to accumulate active particles in confined areas. Finally, we study the influence of an applied external shear flow on the dynamics of active particles near surfaces. We find that a strong directional response emerges for the active particles in the direction perpendicular to the flow direction leading to the cross-stream migration of active particles. This response is dependent on the applied shear flow and the propulsion velocity of the particle, potentially opening up a possibility to sort particles of different activities based on their response to shear flows. Overall, our results indicate that active particles can have a strong directional response in certain environments allowing us to engineer ways of guiding them.

Thermoplasmonics

Thermoplasmonics PDF Author: Guillaume Baffou
Publisher: Cambridge University Press
ISBN: 1108307868
Category : Science
Languages : en
Pages : 310

Get Book Here

Book Description
Plasmonics is an important branch of optics concerned with the interaction of metals with light. Under appropriate illumination, metal nanoparticles can exhibit enhanced light absorption, becoming nanosources of heat that can be precisely controlled. This book provides an overview of the exciting new field of thermoplasmonics and a detailed discussion of its theoretical underpinning in nanophotonics. This topic has developed rapidly in the last decade, and is now a highly-active area of research due to countless applications in nanoengineering and nanomedicine. These important applications include photothermal cancer therapy, drug and gene delivery, nanochemistry and photothermal imaging. This timely and self-contained text is suited to all researchers and graduate students working in plasmonics, nano-optics and thermal-induced processes at the nanoscale.

Colloids and the Depletion Interaction

Colloids and the Depletion Interaction PDF Author: Henk N.W. Lekkerkerker
Publisher: Springer Science & Business Media
ISBN: 9400712227
Category : Science
Languages : en
Pages : 245

Get Book Here

Book Description
Colloids are submicron particles that are ubiquitous in nature (milk, clay, blood) and industrial products (paints, drilling fluids, food). In recent decades it has become clear that adding depletants such as polymers or small colloids to colloidal dispersions allows one to tune the interactions between the colloids and in this way control the stability, structure and rheological properties of colloidal dispersions. This book offers a concise introduction to the fundamentals of depletion effects and their influence on the phase behavior of colloidal dispersions. Throughout the book, conceptual explanations are accompanied by experimental and computer simulation results. From the review by Kurt Binder: "They have succeeded in writing a monograph that is a very well balanced compromise between a very pedagogic introduction, suitable for students and other newcomers, and reviews of the advanced research trends in the field. Thus each chapter contains many and up to date references, but in the initial sections of the chapters, there are suggested exercises which will help the interested reader to recapitulate the main points of the treatment and to deepen his understanding of the subject. Only elementary knowledge of statistical thermodynamics is needed as a background for understanding the derivations presented in this book; thus this text is suitable also for advanced teaching purposes, useful of courses which deal with the physics for soft condensed matter. There does not yet exist any other book with a similar scope..... The readability of this book is furthermore enhanced by a list of symbols, and index of keywords, and last not least by a large number of figures, including many pedagogic sketches which were specifically prepared for this book. Thus, this book promises to be very useful for students and related applied sciences alike." Eur. Phys. J. E (2015) 38: 73

Complex Dynamics of Glass-Forming Liquids

Complex Dynamics of Glass-Forming Liquids PDF Author: Wolfgang Götze
Publisher: Oxford University Press on Demand
ISBN: 0199235341
Category : Science
Languages : en
Pages : 654

Get Book Here

Book Description
Amorphous condensed matter can exhibit complex motions on time scales which extend up to those relevant for the functioning of biomaterials. The book presents the derivation of a microscopic theory for amorphous matter, which exhibits the evolution of such complex motions as a new paradigm of strongly interacting particle systems.e

Soft Matter Physics

Soft Matter Physics PDF Author: Mohamed Daoud
Publisher: Springer Science & Business Media
ISBN: 3662038455
Category : Science
Languages : en
Pages : 335

Get Book Here

Book Description
In a liquid crystal watch, the molecules contained within a thin film of the screen are reorientated each second by extremely weak electrical signals. Here is a fine example of soft matter: molecular systems giving a strong response to a very weak command signal. They can be found almost everywhere. Soft magnetic materials used in transformers exhibit a strong magnetic moment under the action of a weak magnetic field. Take a completely different domain: gelatin, formed from col lagen fibres dissolved in hot water. When we cool below 37°C, gelation occurs, the chains joining up at various points to form a loose and highly deformable network. This is a natural example of soft matter. Going further, rather than consider a whole network, we could take a single chain of flexible polymer, such as polyoxyethylene [POE = (CH CH O)N, 2 2 5 where N rv 10 ], for example, in water. Such a chain is fragile and may break under flow. Even though hydrodynamic forces are very weak on the molecular scale, their cumulated effect may be significant. Think of a rope pulled from both ends by two groups of children. Even if each girl and boy cannot pull very hard, the rope can be broken when there are enough children pulling.

An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation

An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation PDF Author: A. O. Caldeira
Publisher: Cambridge University Press
ISBN: 052111375X
Category : Science
Languages : en
Pages : 299

Get Book Here

Book Description
Develops the basic material necessary to understand the quantum dynamics of macroscopic variables. Ideal for graduate students and researchers.

Scale Invariance

Scale Invariance PDF Author: Annick LESNE
Publisher: Springer Science & Business Media
ISBN: 364215123X
Category : Science
Languages : en
Pages : 406

Get Book Here

Book Description
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.