Cohomological Theory of Dynamical Zeta Functions

Cohomological Theory of Dynamical Zeta Functions PDF Author: Andreas Juhl
Publisher: Birkhäuser
ISBN: 3034883404
Category : Mathematics
Languages : en
Pages : 712

Get Book Here

Book Description
Dynamical zeta functions are associated to dynamical systems with a countable set of periodic orbits. The dynamical zeta functions of the geodesic flow of lo cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were suggested by an analogy between Weil's explicit formula for the Riemann zeta function and Selberg's trace formula ([261]). The purpose of the cohomological theory is to understand the analytical properties of the zeta functions on the basis of suitable analogs of the Lefschetz fixed point formula in which periodic orbits of the geodesic flow take the place of fixed points. This approach is parallel to Weil's idea to analyze the zeta functions of pro jective algebraic varieties over finite fields on the basis of suitable versions of the Lefschetz fixed point formula. The Lefschetz formula formalism shows that the divisors of the rational Hassc-Wcil zeta functions are determined by the spectra of Frobenius operators on l-adic cohomology.

Cohomological Theory of Dynamical Zeta Functions

Cohomological Theory of Dynamical Zeta Functions PDF Author: Andreas Juhl
Publisher: Birkhäuser
ISBN: 3034883404
Category : Mathematics
Languages : en
Pages : 712

Get Book Here

Book Description
Dynamical zeta functions are associated to dynamical systems with a countable set of periodic orbits. The dynamical zeta functions of the geodesic flow of lo cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were suggested by an analogy between Weil's explicit formula for the Riemann zeta function and Selberg's trace formula ([261]). The purpose of the cohomological theory is to understand the analytical properties of the zeta functions on the basis of suitable analogs of the Lefschetz fixed point formula in which periodic orbits of the geodesic flow take the place of fixed points. This approach is parallel to Weil's idea to analyze the zeta functions of pro jective algebraic varieties over finite fields on the basis of suitable versions of the Lefschetz fixed point formula. The Lefschetz formula formalism shows that the divisors of the rational Hassc-Wcil zeta functions are determined by the spectra of Frobenius operators on l-adic cohomology.

Lie Theory

Lie Theory PDF Author: Jean-Philippe Anker
Publisher: Springer Science & Business Media
ISBN: 0817681922
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
* First of three independent, self-contained volumes under the general title, "Lie Theory," featuring original results and survey work from renowned mathematicians. * Contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." * Comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. * Should benefit graduate students and researchers in mathematics and mathematical physics.

Geometric Methods in Algebra and Number Theory

Geometric Methods in Algebra and Number Theory PDF Author: Fedor Bogomolov
Publisher: Springer Science & Business Media
ISBN: 9780817643492
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
* Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory * The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry * Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry

D-Modules, Perverse Sheaves, and Representation Theory

D-Modules, Perverse Sheaves, and Representation Theory PDF Author: Ryoshi Hotta
Publisher: Springer Science & Business Media
ISBN: 081764363X
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.

Geometric Analysis and Applications to Quantum Field Theory

Geometric Analysis and Applications to Quantum Field Theory PDF Author: Peter Bouwknegt
Publisher: Springer Science & Business Media
ISBN: 1461200679
Category : Mathematics
Languages : en
Pages : 213

Get Book Here

Book Description
In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems (A.L. Carey and E. Langmann) * A study of variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds (A. Harris) * A review of monopoles in nonabelian gauge theories (M.K. Murray) * Exciting developments in quantum cohomology (Y. Ruan) * The physics origin of Seiberg-Witten equations in 4-manifold theory (S. Wu) Graduate students, mathematicians and mathematical physicists in the above-mentioned areas will benefit from the user-friendly introductory style of each chapter as well as the comprehensive bibliographies provided for each topic. Prerequisite knowledge is minimal since sufficient background material motivates each chapter.

Kac-Moody Groups, their Flag Varieties and Representation Theory

Kac-Moody Groups, their Flag Varieties and Representation Theory PDF Author: Shrawan Kumar
Publisher: Springer Science & Business Media
ISBN: 1461201055
Category : Mathematics
Languages : en
Pages : 613

Get Book Here

Book Description
Kac-Moody Lie algebras 9 were introduced in the mid-1960s independently by V. Kac and R. Moody, generalizing the finite-dimensional semisimple Lie alge bras which we refer to as the finite case. The theory has undergone tremendous developments in various directions and connections with diverse areas abound, including mathematical physics, so much so that this theory has become a stan dard tool in mathematics. A detailed treatment of the Lie algebra aspect of the theory can be found in V. Kac's book [Kac-90l This self-contained work treats the algebro-geometric and the topological aspects of Kac-Moody theory from scratch. The emphasis is on the study of the Kac-Moody groups 9 and their flag varieties XY, including their detailed construction, and their applications to the representation theory of g. In the finite case, 9 is nothing but a semisimple Y simply-connected algebraic group and X is the flag variety 9 /Py for a parabolic subgroup p y C g.

A Tribute to C.S. Seshadri

A Tribute to C.S. Seshadri PDF Author: Venkatrama Lakshmibai
Publisher: Springer Science & Business Media
ISBN: 9783764304447
Category : Mathematics
Languages : en
Pages : 598

Get Book Here

Book Description
C.S. Seshadri turned seventy on the 29th of February, 2002. To mark this occasion, a symposium was held in Chennai, India, where some of his colleagues gave expository talks highlighting Seshadri's contributions to mathematics. This volume includes expanded texts of these talks as well as research and expository papers on geometry and representation theory. It will serve as an excellent reference for researchers and students in these areas.

Lie Groups Beyond an Introduction

Lie Groups Beyond an Introduction PDF Author: Anthony W. Knapp
Publisher: Springer Science & Business Media
ISBN: 9780817642594
Category : Mathematics
Languages : en
Pages : 844

Get Book Here

Book Description
This book takes the reader from the end of introductory Lie group theory to the threshold of infinite-dimensional group representations. Merging algebra and analysis throughout, the author uses Lie-theoretic methods to develop a beautiful theory having wide applications in mathematics and physics. The book initially shares insights that make use of actual matrices; it later relies on such structural features as properties of root systems.

Categorical Decomposition Techniques in Algebraic Topology

Categorical Decomposition Techniques in Algebraic Topology PDF Author: Gregory Arone
Publisher: Springer Science & Business Media
ISBN: 9783764304003
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
The book consists of articles at the frontier of current research in Algebraic Topology. It presents recent results by top notch experts, and is intended primarily for researchers and graduate students working in the field of algebraic topology. Included is an important article by Cohen, Johnes and Yan on the homology of the space of smooth loops on a manifold M, endowed with the Chas-Sullivan intersection product, as well as an article by Goerss, Henn and Mahowald on stable homotopy groups of spheres, which uses the cutting edge technology of "topological modular forms".

Rigid Analytic Geometry and Its Applications

Rigid Analytic Geometry and Its Applications PDF Author: Jean Fresnel
Publisher: Springer Science & Business Media
ISBN: 1461200415
Category : Mathematics
Languages : en
Pages : 303

Get Book Here

Book Description
Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.