Co-laminar Flow Cells for Electrochemical Energy Conversion

Co-laminar Flow Cells for Electrochemical Energy Conversion PDF Author: Marc-Antoni Goulet
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Get Book Here

Book Description
A recently developed class of electrochemical cell based on co-laminar flow of reactants through porous electrodes is investigated. New architectures are designed and assessed for fuel recirculation and rechargeable battery operation. Extensive characterization of cells is performed to determine most sources of voltage loss during operation. To this end, a specialized flow cell technique is developed to mitigate mass transport limitations and measure kinetic rates of reaction on flow-through porous electrodes. This technique is used in in conjunction with cyclic voltammetry and electrochemical impedance spectroscopy to evaluate different treatments for enhancing the rates of vanadium redox reactions on carbon paper electrodes. It is determined that surface area enhancements are the most effective way for increasing redox reaction rates and thus a novel in situ flowing deposition method is conceived to achieve this objective at minimal cost. It is demonstrated that flowing deposition of carbon nanotubes can increase the electrochemical surface area of carbon paper by over an order of magnitude. It is also demonstrated that flowing deposition can be achieved dynamically during cell operation, leading to considerably improved kinetics and mass transport properties. To take full advantage of this deposition method, the total ohmic resistance of the cell is considerably reduced through design optimization with reduced channel width, integration of current collectors and reduction of reactant concentration. With electrodes enhanced by dynamic flowing deposition the cell presented in this study demonstrates nearly a fourfold improvement in power density over the baseline design. Producing more than twice the power density of the leading co-laminar flow cell without the use of catalysts or elevated temperatures and pressures, this cell provides a low-cost standard for further research into system scale-up and implementation of co-laminar flow cell technology. More generally, the experimental technique and deposition method developed in this work are expected to find broader use in other fields of electrochemical energy conversion.

Co-laminar Flow Cells for Electrochemical Energy Conversion

Co-laminar Flow Cells for Electrochemical Energy Conversion PDF Author: Marc-Antoni Goulet
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Get Book Here

Book Description
A recently developed class of electrochemical cell based on co-laminar flow of reactants through porous electrodes is investigated. New architectures are designed and assessed for fuel recirculation and rechargeable battery operation. Extensive characterization of cells is performed to determine most sources of voltage loss during operation. To this end, a specialized flow cell technique is developed to mitigate mass transport limitations and measure kinetic rates of reaction on flow-through porous electrodes. This technique is used in in conjunction with cyclic voltammetry and electrochemical impedance spectroscopy to evaluate different treatments for enhancing the rates of vanadium redox reactions on carbon paper electrodes. It is determined that surface area enhancements are the most effective way for increasing redox reaction rates and thus a novel in situ flowing deposition method is conceived to achieve this objective at minimal cost. It is demonstrated that flowing deposition of carbon nanotubes can increase the electrochemical surface area of carbon paper by over an order of magnitude. It is also demonstrated that flowing deposition can be achieved dynamically during cell operation, leading to considerably improved kinetics and mass transport properties. To take full advantage of this deposition method, the total ohmic resistance of the cell is considerably reduced through design optimization with reduced channel width, integration of current collectors and reduction of reactant concentration. With electrodes enhanced by dynamic flowing deposition the cell presented in this study demonstrates nearly a fourfold improvement in power density over the baseline design. Producing more than twice the power density of the leading co-laminar flow cell without the use of catalysts or elevated temperatures and pressures, this cell provides a low-cost standard for further research into system scale-up and implementation of co-laminar flow cell technology. More generally, the experimental technique and deposition method developed in this work are expected to find broader use in other fields of electrochemical energy conversion.

Practical Advances in Microfluidic Electrochemical Energy Conversion

Practical Advances in Microfluidic Electrochemical Energy Conversion PDF Author: Omar Ibrahim
Publisher:
ISBN:
Category :
Languages : en
Pages : 146

Get Book Here

Book Description
Micro-fabrication technologies has enabled the inexpensive production of microchannels which has been utilized in electrochemical flow cells like fuel cells and flow batteries. These offer simplicity and cost benefits as they utilize co-laminar flow for flowing streams separation rather than a physical separator or membrane. This thesis aims to identify practical applications for viable utility of microfluidic flow cells and suggests their potential use for analytical platforms, disposable power sources or combined electrolyte functionalities such as cooling and powering of electronics. All advances reported in this work leverage microfluidic cell architectures with flow-through porous electrodes to achieve competitive performance with simplified, inexpensive device solutions. A previously reported microfluidic redox battery design is modified to form an analytical cell that is applied throughout this dissertation. The analytical cell designs have two separate cell portions which, when connected in parallel, enable in-situ characterization of the dual-pass design, allowing deeper understanding of the reactant conversion and crossover. When the two portions are connected in series, quantifying possible losses in flow cell arrays, such as shunt current, is allowed. The technology is also applied to explore flow cells with non-aqueous electrolytes, which generally enable higher cell voltages but have limited performance from high membrane resistance. The proposed membrane-less cell with non-aqueous electrolytes shows comparable performance with aqueous vanadium electrolytes. Moreover, a chemistry evaluation framework is applied to assess redox reactants and supporting electrolytes selection for biodegradable primary batteries. The selected quinone redox chemistry is demonstrated in a novel 1 V paper-based capillary flow cell, with flow-through porous electrodes, that is proven to be powerful, cheap, scalable and biodegradable and demonstrated to directly substitute a coin cell battery for powering a water quality sensor. This new class of batteries thus holds great promise to radically change the portable battery paradigm; from considering it a harmful waste to a source of biodegradable materials that could even nurture the environment by enriching soil and water beyond its life cycle. Lastly, a scaled co-laminar flow cell is shown for the first time and embedded in a printed circuit board for the application of simultaneous thermal and power management of mounted electronics. This demonstration has advantages in future high-density computers and enables new perspectives for near-term adoption.

Flow Cells for Electrochemical Energy Systems

Flow Cells for Electrochemical Energy Systems PDF Author: Liang An
Publisher: Springer Nature
ISBN: 3031372719
Category : Technology & Engineering
Languages : en
Pages : 259

Get Book Here

Book Description
This book is a state-of-the-art review on recent advances in flow cells for electrochemical energy systems. The book includes an introduction to flow cells, proton exchange membrane fuel cells, photocatalytic fuel cells, organic flow batteries, redox flow batteries, microfluidic flow cells, as well as electrolysis cells for CO2 and nitrogen reduction. The book provides an essential reference for professors, researchers, and policymakers globally in academia, industry, and government.

Advanced Electrochemical Materials in Energy Conversion and Storage

Advanced Electrochemical Materials in Energy Conversion and Storage PDF Author: Junbo Hou
Publisher: CRC Press
ISBN: 1000544885
Category : Science
Languages : en
Pages : 395

Get Book Here

Book Description
This book focuses on novel electrochemical materials particularly designed for specific energy applications. It presents the relationship between materials properties, state-of-the-art processing, and device performance and sheds light on the research, development, and deployment (RD&D) trend of emerging materials and technologies in this field. Features: Emphasizes electrochemical materials applied in PEM fuel cells and water splitting Summarizes anode, cathode, electrolyte, and additive materials developed for lithium-ion batteries and reviews other batteries, including lithium-air, lithium-sulfur, sodium- and potassium-ion batteries, and multivalent-ion batteries Discusses advanced carbon materials for supercapacitors Highlights catalyst design and development for CO2RR and fundamentals of proton facilitated reduction reactions With a cross-disciplinary approach, this work will be of interest to scientists and engineers across chemical engineering, mechanical engineering, materials science, chemistry, physics, and other disciplines working to advance electrochemical energy conversion and storage capabilities and applications.

Microfluidic Fuel Cells and Batteries

Microfluidic Fuel Cells and Batteries PDF Author: Erik Kjeang
Publisher: Springer
ISBN: 3319063464
Category : Technology & Engineering
Languages : en
Pages : 81

Get Book Here

Book Description
Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is for this book to be a ‘one-stop shop’ for current and prospective researchers in the general area of membraneless, microfluidic electrochemical energy conversion. As the overall goal of the book is to provide a comprehensive resource for both research and technology development, it features extensive descriptions of the underlying fundamental theory, fabrication methods, and cell design principles, as well as a thorough review of previous contributions in this field and a future outlook with recommendations for further work. It is hoped that the content will entice and enable new research groups and engineers to rapidly gain traction in their own laboratories towards the development of next generation microfluidic electrochemical cells.

Electrochemical Power Sources: Fundamentals, Systems, and Applications

Electrochemical Power Sources: Fundamentals, Systems, and Applications PDF Author: Tom Smolinka
Publisher: Elsevier
ISBN: 0128194251
Category : Technology & Engineering
Languages : en
Pages : 512

Get Book Here

Book Description
Electrochemical Power Sources: Fundamentals, Systems, and Applications: Hydrogen Production by Water Electrolysis offers a comprehensive overview about different hydrogen production technologies, including their technical features, development stage, recent advances, and technical and economic issues of system integration. Allied processes such as regenerative fuel cells and sea water electrolysis are also covered. For many years hydrogen production by water electrolysis was of minor importance, but research and development in the field has increased significantly in recent years, and a comprehensive overview is missing. This book bridges this gap and provides a general reference to the topic. Hydrogen production by water electrolysis is the main technology to integrate high shares of electricity from renewable energy sources and balance out the supply and demand match in the energy system. Different electrochemical approaches exist to produce hydrogen from RES (Renewable Energy Sources). Covers the fundamentals of hydrogen production by water electrolysis Reviews all relevant technologies comprehensively Outlines important technical and economic issues of system integration Includes commercial examples and demonstrates electrolyzer projects

Biofuel Cells

Biofuel Cells PDF Author: Shaojun Dong
Publisher: Elsevier
ISBN: 0443138362
Category : Science
Languages : en
Pages : 410

Get Book Here

Book Description
Biofuel Cells: The Design and Application of Biological Catalysts presents a detailed examination of biofuel cells, from their fundamentals and basic principles through to the latest technological, materials, and bioengineering developments. The book follows a clear, step-by-step chapter structure that takes the reader through each stage of the design, construction, and operation of BFC-based devices. Chapters 1 and 2 provide a detailed review of the fundamentals and basic principles of microbial and biofuel cells, including the electrochemistry, materials and mechanics, and applications. Chapter 3 provides an in-depth examination of catalyst evolution and chapter 4 explains all aspects of electron transfer in enzymatic biofuel cells. Chapter 5 reviews all types of hybrid biofuel cell, including fabrication and design strategies for thermoelectric and triboelectric energy devices. In chapter 6 advanced manufacture techniques for biofuel cells and bio-devices are explained, including the working principles and methodologies for printing, microfluidics, fiber, microneedle, and others. Finally, chapter 7 explores the diverse applications of biofuel cells and bio-devices, from biosensors and bioelectronics to capacitive biofuel cells. Chapters are supported by computational tools, working manuals for the techniques discussed, and detailed schematics and flowcharts for BCF fabrication. Biofuel Cells: The Design and Application of Biological Catalysts is an invaluable resource for graduate students and early career researchers interested in any aspect of biofuel cells and bio-devices and is specifically designed to benefit students from multiple backgrounds, including chemical engineering, electrical engineering, mechanical engineering, and biotechnology. Explains the mechanisms of enzymatic and microbial biocatalysts, electron transfer mechanisms, and bioengineering for biocatalysts in BFCs Explores the latest developments in biofuel cell technology, including printed biofuel cells, fiber biofuel cells, as well as other manufacturing methods Reviews the versatile applications of biofuel cells, including bio-hybrid systems, self-powered biosensors, and flexible bioelectronics

Nanotechnology in Fuel Cells

Nanotechnology in Fuel Cells PDF Author: Huaihe Song
Publisher: Elsevier
ISBN: 0323897916
Category : Technology & Engineering
Languages : en
Pages : 473

Get Book Here

Book Description
Nanotechnology in Fuel Cells focuses on the use of nanotechnology in macroscopic and nanosized fuel cells to enhance their performance and lifespan. The book covers the fundamental design concepts and promising applications of nanotechnology-enhanced fuel cells and their advantages over traditional fuel cells in portable devices, including longer shelf life and lower cost. In the case of proton-exchange membrane fuel cells (PEMFCs), nano-membranes could provide 100 times higher conductivity of hydrogen ions in low humidity conditions than traditional membranes. For hydrogen fuel cell, nanocatalysts (Pt hybrid nanoparticles) could provide 12 times higher catalytic activity. This is an important reference source for materials scientists and engineers who are looking to understand how nanotechnology is being used to create more efficient macro- and nanosized fuel cells. - Outlines how fuel cells can be nanoengineered to enhance their performance and lifespan - Covers a variety of fuel cell types, including proton-exchange membrane fuel cells and hydrogen-based fuel cells - Assesses the major challenges of nanoengineering fuel cells at an industrial scale

Microfluidic Fuel Cells

Microfluidic Fuel Cells PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Microfluidic fuel cell architectures are presented in this thesis. This work represents the mechanical and microfluidic portion of a microfluidic biofuel cell project. While the microfluidic fuel cells developed here are targeted to eventual integration with biocatalysts, the contributions of this thesis have more general applicability. The cell architectures are developed and evaluated based on conventional non-biological electrocatalysts. The fuel cells employ co-laminar flow of fuel and oxidant streams that do not require a membrane for physical separation, and comprise carbon or gold electrodes compatible with most enzyme immobilization schemes developed to date. The demonstrated microfluidic fuel cell architectures include the following: a single cell with planar gold electrodes and a grooved channel architecture that accommodates gaseous product evolution while preventing crossover effects; a single cell with planar carbon electrodes based on graphite rods; a three-dimensional hexagonal array cell based on multiple graphite rod electrodes with unique scale-up opportunities; a single cell with porous carbon electrodes that provides enhanced power output mainly attributed to the increased active area; a single cell with flow-through porous carbon electrodes that provides improved performance and overall energy conversion efficiency; and a single cell with flow-through porous gold electrodes with similar capabilities and reduced ohmic resistance. As compared to previous results, the microfluidic fuel cells developed in this work show improved fuel cell performance (both in terms of power density and efficiency). In addition, this dissertation includes the development of an integrated electrochemical velocimetry approach for microfluidic devices, and a computational modeling study of strategic enzyme patterning for microfluidic biofuel cells with consecutive reactions.

Increased Biodiesel Efficiency

Increased Biodiesel Efficiency PDF Author: Magno Trindade
Publisher: Springer
ISBN: 3319735527
Category : Technology & Engineering
Languages : en
Pages : 193

Get Book Here

Book Description
This book advances the use of biodiesel—more environmentally friendly than traditional fossil fuels—by showing how it can be synthesized at a lower cost, with greater efficiency and as a more pure and stable product. It presents methods based on fluorescence spectroscopy, which are less time-consuming than the traditional Rancimat analysis for monitoring stability, and are therefore less prone to allowing oxidative decay in the biofuel. Biodiesel exploits a variety of raw materials, from freshly harvested cottonseed to recycled cooking oil. These are cheap to produce and generate fuel lower in polluting sulphur and aromatic compounds than its petroleum-based equivalent. Beginning by addressing different protocols for synthesis based on fatty acids, methyl and ethyl esters, it then describes chemical analyses essential to establishing the purity of the biodiesel. It highlights in detail the use of multifunctional and synthetic antioxidants, and investigates the impact of synthetic chalcones and their derivatives on the oxidative stability of biodiesel. The author goes on to explain how to ameliorate various influences – UV irradiation and metal contaminants for example – which increase the hazards of oxidation, such as degradation and instability. New pre-treatment procedures performed using ultrasonic energies, thermostatic bath and vortex stirring are not only more environmentally friendly, but cut down on the time-consuming process of determining metal content, and allow for the use of more environmentally friendly aqueous reagents. The book investigates and demonstrates these techniques on the basis of real-world results. Further, it suggests the practical uses of byproducts of biodiesel production, for example, using glycerol as a source of energy and high valuable chemicals. These useful techniques aid any researcher exploring the production process of biodiesel and its stabilization and characteristics.