Fire in Sierra Nevada Forests

Fire in Sierra Nevada Forests PDF Author: George E. Gruell
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 268

Get Book Here

Book Description
In Fire in Sierra Nevada Forests, George Gruell examines the woodlands through repeat photography: rephotographing sites depicted in historical photographs to compare past vegetation to present. The book asks readers to study the evidence, then take an active part in current debates over prescribed fire, fuel buildup, logging, and the management of our national forests.

Climate, Fire and Forest Management in the Sierra Nevada

Climate, Fire and Forest Management in the Sierra Nevada PDF Author: Jens Turner Stevens
Publisher:
ISBN: 9781321213010
Category :
Languages : en
Pages :

Get Book Here

Book Description
Montane coniferous forests in western North America are experiencing rapid environmental change, due in part to increasing fire severity and decreasing winter snowpack. Many of these forests experienced frequent low-severity fires prior to intensive logging and fire suppression during the nineteenth and twentieth centuries, which have led to increased fuel loads and increased dominance by fire-sensitive, shade-tolerant tree species. Forest managers seeking to mitigate increases in fire size and severity are increasingly implementing fuel-reduction treatments, which target small trees and surface fuels for removal. However, the ecological effects of these treatments on subsequent wildfire behavior, forest resilience, understory plant community dynamics, and plant invasions have not been well documented. In Chapter 1, I utilized a large-scale natural experiment to investigate the effects of recent fuel treatments on subsequent wildfire severity and structural resilience, in twelve different yellow pine and mixed-conifer forest sites in the mountains of eastern California. By quantifying forest structure in treated and adjacent untreated stands, both after wildfire and without wildfire, I demonstrated that treatments reduced the amount of structural change caused by wildfire, as a result of their moderating effect on fire severity. Two years post-wildfire, treated stands resembled pre-wildfire stands, in that they had greater tree litter cover, more tree seedling regeneration, less shrub cover and recruitment, and less bare soil relative to untreated stands, which generally burned at very high severity. In Chapter 2, I used the same network of twelve sites to test whether the gradient of disturbance severity, from untreated and unburned stands to high-severity wildfire stands, generated predictable patterns of understory plant community composition and diversity. I incorporated information on the evolutionary history of the native flora to show that increasing disturbance severity favored understory species with southern biogeographic affinity. Analysis of leaf functional traits indicated that increases in microclimatic water deficit in high-severity stands favored species with reduced specific leaf area relative to their leaf Nitrogen concentration. Native plant diversity at the stand scale was greatest in treated stands that subsequently burned in a wildfire, however this diversity peak was due to increased plot-scale alpha diversity relative to undisturbed stands, and increased between-plot beta diversity relative to high-severity wildfire stands. Conversely, exotic plant diversity peaked in high-severity wildfire stands that had not been previously treated. In Chapter 3, I investigated the population-level response of non-native species to interactions between forest harvesting strategies, prescribed fire, and winter snowpack depth using a transplant experiment with two non-native shrubs: Scotch broom (Cytisus scoparius L. (Link)) and Spanish broom (Spartium junceum L.). Both species had the strongest positive population growth responses to canopy thinning, rather than clearcuts or dense canopies. Despite positive effects of prescribed fire on seed germination, frequent prescribed fire was shown to decrease population growth rates for both species. However, experimental snowpack reductions led to increased winter survival by both species, which translated into strong positive effects on population growth rates. Under a future climate scenario where winter snowpack levels increase in elevation, middle-elevation forests that experience fuel treatments may therefore be at increased risk of invasion by non-native plants due to synergies between climate and management regimes.

Fire in Sierra Nevada Forests

Fire in Sierra Nevada Forests PDF Author: George E. Gruell
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 266

Get Book Here

Book Description
In Fire in Sierra Nevada Forests, George Gruell examines the woodlands through repeat photography: rephotographing sites depicted in historical photographs to compare past vegetation to present. The book asks readers to study the evidence, then take an active part in current debates over prescribed fire, fuel buildup, logging, and the management of our national forests.

Fire on the Mountain

Fire on the Mountain PDF Author: Commission on California State Government Organization and Economy
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 88

Get Book Here

Book Description
"In this report, the Commission calls for transformational culture change in its forest management practices. The U.S. Department of Agriculture (USDA) reported in December 2017 that approximately 27 million trees had died statewide on federal, state and private lands since November 2016. The tally brought to 129 million the number of trees that have died in California forests during years of drought and bark beetle infestations since 2010. During its review, the Commission found that California’s forests suffer from neglect and mismanagement, resulting in overcrowding that leaves them susceptible to disease, insects and wildfire. The Commission found commitment to long-lasting forest management changes at the highest levels of government, but that support for those changes needs to spread down not just through the state’s massive bureaucracy and law- and policymaking apparatuses, but among the general public as well. Complicating the management problem is the fact that the State of California owns very few of the forests within its borders – most are owned by the federal government or private landowners. Among the Commission’s nine recommendations, it urges the state to take a greater leadership role in collaborative forest management planning at the watershed level. The Good Neighbor Authority granted in the 2014 Farm Bill provides a mechanism for the state to conduct restoration activities on federal land, but state agencies must have the financial and personnel resources to perform this work. As part of this collaborative effort, it calls upon the state to use more prescribed fire to reinvigorate forests, inhibit firestorms and help protect air and water quality. Central to these efforts must be a statewide public education campaign to help Californians understand why healthy forests matter to them, and elicit buy-in for the much-needed forest treatments."--

Managing Sierra Nevada Forests

Managing Sierra Nevada Forests PDF Author: Malcolm North
Publisher: Createspace Independent Publishing Platform
ISBN: 9781482034882
Category : Nature
Languages : en
Pages : 196

Get Book Here

Book Description
There has been widespread interest in applying new forest practices based on concepts presented in U.S. Forest Service General Technical Report PSW-GTR-220, "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests." This collection of papers (PSW-GTR-237) summarizes the state of the science in some topics relevant to this forest management approach, presents case studies of collaborative planning efforts and field implementation of these new practices, and clarifies some of the concepts presented in GTR 220. It also describes a method for assessing forest heterogeneity at the stand level using the Forest Vegetation Simulator and a new geographic information system tool for project-level planning that classifies a landscape into different topographic categories. While this collection of papers presents information and applications relevant to implementation, it does not offer standards and prescriptions. Forest management should be flexible to adapt to local forest conditions and stakeholder interests. This report does, however, strive to clarify concepts and present examples that may improve communication with stakeholders and help build common ground for collaborative forest management.

Fire and Climatic Change in Temperate Ecosystems of the Western Americas

Fire and Climatic Change in Temperate Ecosystems of the Western Americas PDF Author: Thomas T. Veblen
Publisher: Springer Science & Business Media
ISBN: 038721710X
Category : Science
Languages : en
Pages : 456

Get Book Here

Book Description
Both fire and climatic variability have monumental impacts on the dynamics of temperate ecosystems. These impacts can sometimes be extreme or devastating as seen in recent El Nino/La Nina cycles and in uncontrolled fire occurrences. This volume brings together research conducted in western North and South America, areas of a great deal of collaborative work on the influence of people and climate change on fire regimes. In order to give perspective to patterns of change over time, it emphasizes the integration of paleoecological studies with studies of modern ecosystems. Data from a range of spatial scales, from individual plants to communities and ecosystems to landscape and regional levels, are included. Contributions come from fire ecology, paleoecology, biogeography, paleoclimatology, landscape and ecosystem ecology, ecological modeling, forest management, plant community ecology and plant morphology. The book gives a synthetic overview of methods, data and simulation models for evaluating fire regime processes in forests, shrublands and woodlands and assembles case studies of fire, climate and land use histories. The unique approach of this book gives researchers the benefits of a north-south comparison as well as the integration of paleoecological histories, current ecosystem dynamics and modeling of future changes.

Fire in California's Ecosystems

Fire in California's Ecosystems PDF Author: Neil G. Sugihara
Publisher: Univ of California Press
ISBN: 0520246055
Category : Business & Economics
Languages : en
Pages : 613

Get Book Here

Book Description
Focusing on California and issues specific to fire ecology and management in the state's bioregions, this work provides scientific information for use in land restoration and other management decisions made in the field. It introduces the basics of fire ecology, and includes an overview of fire, vegetation and climate in California; and more.

A Comparison of Fuel Reduction Methods for Wildfire Risk Management and Climate Change Resiliency in Mixed Conifer Forests in the Sierra Nevada

A Comparison of Fuel Reduction Methods for Wildfire Risk Management and Climate Change Resiliency in Mixed Conifer Forests in the Sierra Nevada PDF Author: Heather Navle
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Wildfires in the mixed conifer forests of California's Sierra Nevada have been a common and natural disturbance for thousands of years, historically occurring every 3 to 30 years. The flora and fauna of the mixed conifer forest have evolved to depend on low to moderate severity wildfires for reproduction, foraging, and habitat. However, the Sierra Nevada has experienced dramatic environmental changes over the past ~150 years as a result of three main factors: wildfire suppression, climate change, and habitat loss. Because of the threat wildfires pose to human lives, property and timber harvest, they have been suppressed to an extent that has completely altered mixed conifer ecosystems. One of the changes to these ecosystems is increased vegetative fuel density, which can result in stand-replacing mega fires. To mitigate these high-severity mega wildfires, forest managers incorporate various fuel reduction methods into forest management plans. These impacts can have negative effects on forest ecosystems, degrading ecosystem characteristics that are critical for adapting to climate change. Thus, the two main objectives of this paper are to compare and contrast four different fuel reduction methods based on their effectiveness to (I) reduce wildfire risk and (II) promote climate change resiliency. The four fuel reduction methods are: low thinning, canopy thinning, selective thinning, and prescribed fire. These four fuel reduction methods have been compared in syntheses tables for the two main objectives. Qualitative and quantitative metric data, based on a literature review, were used to compare the optimal effects of each fuel reduction method. It was found that prescribed fire or thinning with prescribed fire resulted in the most optimal effects when considering both reduced wildfire risk and climate change resilience. However, tree mortality and the risk of fire escaping controlled boundaries are increased during prescribed fire operations. Additionally, results showed that all four fuel reduction methods displayed both positive and negative effects, depending on the metric used to evaluate the objective, which suggests that appropriate application of fuel reduction methods is highly variable depending on the goals and the environment. For example, canopy thinning alone may have desirable effects when prescribed fire is financially unfeasible or unsafe due to proximity to buildings. Applying prescribed fire is the most optimal fuel reduction method in most forest conditions; however, it is recommended that forest managers evaluate forest structure, density, and tree species prior to selecting the most appropriate fuel reduction method for their situation.

Ecological Foundations for Fire Management in North American Forest and Shrubland Ecosystems

Ecological Foundations for Fire Management in North American Forest and Shrubland Ecosystems PDF Author:
Publisher:
ISBN:
Category : Ecosystem management
Languages : en
Pages : 102

Get Book Here

Book Description
This synthesis provides an ecological foundation for management of the diverse ecosystems and fire regimes of North America, based on scientific principles of fire interactions with vegetation, fuels, and biophysical processes. Although a large amount of scientific data on fire exists, most of those data have been collected at small spatial and temporal scales. Thus, it is challenging to develop consistent science-based plans for large spatial and temporal scales where most fire management and planning occur. Understanding the regional geographic context of fire regimes is critical for developing appropriate and sustainable management strategies and policy. The degree to which human intervention has modified fire frequency, intensity, and severity varies greatly among different ecosystems, and must be considered when planning to alter fuel loads or implement restorative treatments. Detailed discussion of six ecosystems--ponderosa pine forest (western North America), chaparral (California), boreal forest (Alaska and Canada), Great Basin sagebrush (intermountain West), pine and pine-hardwood forests (Southern Appalachian Mountains), and longleaf pine (Southeastern United States)-- illustrates the complexity of fire regimes and that fire management requires a clear regional focus that recognizes where conflicts might exist between fire hazard reduction and resource needs. In some systems, such as ponderosa pine, treatments are usually compatible with both fuel reduction and resource needs, whereas in others, such as chaparral, the potential exists for conflicts that need to be closely evaluated. Managing fire regimes in a changing climate and social environment requires a strong scientific basis for developing fire management and policy.

Forest Pattern, Surface Fire Regimes, and Climatic Change in the Sierra Nevada, California

Forest Pattern, Surface Fire Regimes, and Climatic Change in the Sierra Nevada, California PDF Author: Carol Miller
Publisher:
ISBN:
Category : Forest ecology
Languages : en
Pages : 264

Get Book Here

Book Description


An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests

An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests PDF Author: Malcolm North
Publisher: Createspace Independent Pub
ISBN: 9781480164789
Category : Nature
Languages : en
Pages : 68

Get Book Here

Book Description
In recent years, there has been substantial debate over Sierra Nevada forest management. All perspectives on this debate inevitably cite “sound science” as a necessary foundation for any management practice. Over the dozen years since publication of the last science summary, the Sierra Nevada Ecosystem Project (SNEP 1996), many relevant research projects have published findings in dozens of scientific journals, yet these have not been synthesized or presented in a form that directly addresses current land management challenges. Current management usually cites a “healthy forest”1 as a primary objective. It is difficult, however, to define forest “health,” and, as a broad concept, “a healthy forest” provides few specifics to guide management or assess forest practices. Various constituencies have different ideas of forest health (i.e., sustainable timber production, fire resilience, biodiversity, etc.) making forest health unclear as an objective (Kolb et al. 1994). A premise of silviculture is that forest prescriptions can be tailored to fit a wide variety of land management objectives, once those objectives are defined. We attempt to define some of the key management objectives on National Forest System lands in the Sierra Nevada and how they might be approached through particular silvicultural prescriptions. In this paper, we focus on summarizing forest research completed at different scales and integrating those findings into suggestions for managing forest landscapes. Although many experiments and forest treatments still occur at the stand level, ecological research and recent public input have emphasized the need to address cumulative impacts and coordinate management across the forest landscape. We believe our synthesis has some novel and highly applicable management implications. This paper, however, is not intended to produce new research findings for the academic community; rather it is an effort to provide managers of Sierran forests with a summary of “the best available science.” Some of the suggestions in this paper are already used in different Forest Service management practices. There are several aspects of forest management that this paper does not address, but we would like to particularly note two omissions. The USDA Forest Service is charged with multiple-use management, which can include more objectives (e.g., socioeconomic impacts) than our focus on ecological restoration of Sierran forests. Restoration practices need both public and economic support to be socially and financially viable. Also, we do not specifically address the issues of water yield and quality in this paper, although water is one of the Sierra's most important resources. Although our focus is on forest conditions, the suggested management practices may also make forests more resilient to disturbances including climate change. Management practices that help restore the forest headwaters of Sierran watersheds will benefit water production and quality for downstream users.