Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169)

Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169) PDF Author: Kazuya Kato
Publisher: Princeton University Press
ISBN: 0691138222
Category : Mathematics
Languages : en
Pages : 349

Get Book Here

Book Description
In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinement of the toroidal compactifications by Mumford et al. For general D, fine moduli spaces may have slits caused by Griffiths transversality at the boundary and be no longer locally compact. Second, Kato and Usui construct eight enlargements of D and describe their relations by a fundamental diagram, where four of these enlargements live in the Hodge theoretic area and the other four live in the algebra-group theoretic area. These two areas are connected by a continuous map given by the SL(2)-orbit theorem of Cattani-Kaplan-Schmid. This diagram is used for the construction in the first topic.

Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169)

Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169) PDF Author: Kazuya Kato
Publisher: Princeton University Press
ISBN: 0691138222
Category : Mathematics
Languages : en
Pages : 349

Get Book Here

Book Description
In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinement of the toroidal compactifications by Mumford et al. For general D, fine moduli spaces may have slits caused by Griffiths transversality at the boundary and be no longer locally compact. Second, Kato and Usui construct eight enlargements of D and describe their relations by a fundamental diagram, where four of these enlargements live in the Hodge theoretic area and the other four live in the algebra-group theoretic area. These two areas are connected by a continuous map given by the SL(2)-orbit theorem of Cattani-Kaplan-Schmid. This diagram is used for the construction in the first topic.

Geometry at the Frontier: Symmetries and Moduli Spaces of Algebraic Varieties

Geometry at the Frontier: Symmetries and Moduli Spaces of Algebraic Varieties PDF Author: Paola Comparin
Publisher: American Mathematical Soc.
ISBN: 1470453274
Category : Education
Languages : en
Pages : 282

Get Book Here

Book Description
Articles in this volume are based on lectures given at three conferences on Geometry at the Frontier, held at the Universidad de la Frontera, Pucón, Chile in 2016, 2017, and 2018. The papers cover recent developments on the theory of algebraic varieties—in particular, of their automorphism groups and moduli spaces. They will be of interest to anyone working in the area, as well as young mathematicians and students interested in complex and algebraic geometry.

Mumford-Tate Groups and Domains

Mumford-Tate Groups and Domains PDF Author: Mark Green
Publisher: Princeton University Press
ISBN: 1400842735
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject.

Lectures on K3 Surfaces

Lectures on K3 Surfaces PDF Author: Daniel Huybrechts
Publisher: Cambridge University Press
ISBN: 1316797252
Category : Mathematics
Languages : en
Pages : 499

Get Book Here

Book Description
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.

Hodge Theory

Hodge Theory PDF Author: Eduardo Cattani
Publisher: Princeton University Press
ISBN: 0691161348
Category : Mathematics
Languages : en
Pages : 607

Get Book Here

Book Description
This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn't require a deep background. At the same time, the book presents some topics at the forefront of current research. The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch-Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck’s algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne’s theorem on absolute Hodge cycles), and variation of mixed Hodge structures. The contributors include Patrick Brosnan, James Carlson, Eduardo Cattani, François Charles, Mark Andrea de Cataldo, Fouad El Zein, Mark L. Green, Phillip A. Griffiths, Matt Kerr, Lê Dũng Tráng, Luca Migliorini, Jacob P. Murre, Christian Schnell, and Loring W. Tu.

The Geometry of Moduli Spaces of Sheaves

The Geometry of Moduli Spaces of Sheaves PDF Author: Daniel Huybrechts
Publisher: Cambridge University Press
ISBN: 1139485822
Category : Mathematics
Languages : en
Pages : 345

Get Book Here

Book Description
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.

Quasi-projective Moduli for Polarized Manifolds

Quasi-projective Moduli for Polarized Manifolds PDF Author: Eckart Viehweg
Publisher: Springer Science & Business Media
ISBN: 3642797458
Category : Mathematics
Languages : en
Pages : 329

Get Book Here

Book Description
The concept of moduli goes back to B. Riemann, who shows in [68] that the isomorphism class of a Riemann surface of genus 9 ~ 2 depends on 3g - 3 parameters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [59]), as well as solutions in some cases. It is the aim of this monograph to present methods which allow over a field of characteristic zero to construct certain moduli schemes together with an ample sheaf. Our main source of inspiration is D. Mumford's "Geometric In variant Theory". We will recall the necessary tools from his book [59] and prove the "Hilbert-Mumford Criterion" and some modified version for the stability of points under group actions. As in [78], a careful study of positivity proper ties of direct image sheaves allows to use this criterion to construct moduli as quasi-projective schemes for canonically polarized manifolds and for polarized manifolds with a semi-ample canonical sheaf.

Algebraic Geometry III

Algebraic Geometry III PDF Author: A.N. Parshin
Publisher: Springer Science & Business Media
ISBN: 9783540546818
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This two-part EMS volume provides a succinct summary of complex algebraic geometry, coupled with a lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties. An excellent companion to the older classics on the subject.

Problems on Mapping Class Groups and Related Topics

Problems on Mapping Class Groups and Related Topics PDF Author: Benson Farb
Publisher: American Mathematical Soc.
ISBN: 0821838385
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.

Chow Rings, Decomposition of the Diagonal, and the Topology of Families

Chow Rings, Decomposition of the Diagonal, and the Topology of Families PDF Author: Claire Voisin
Publisher: Princeton University Press
ISBN: 0691160511
Category : Mathematics
Languages : en
Pages : 171

Get Book Here

Book Description
In this book, Claire Voisin provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The volume is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by Voisin. The book focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by Voisin looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others.