Author: Camil Muscalu
Publisher: Cambridge University Press
ISBN: 1107031826
Category : Mathematics
Languages : en
Pages : 341
Book Description
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Classical and Multilinear Harmonic Analysis
Author: Camil Muscalu
Publisher: Cambridge University Press
ISBN: 1107031826
Category : Mathematics
Languages : en
Pages : 341
Book Description
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Publisher: Cambridge University Press
ISBN: 1107031826
Category : Mathematics
Languages : en
Pages : 341
Book Description
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Classical and Multilinear Harmonic Analysis
Author: Camil Muscalu
Publisher: Cambridge University Press
ISBN: 0521882451
Category : Mathematics
Languages : en
Pages : 389
Book Description
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Publisher: Cambridge University Press
ISBN: 0521882451
Category : Mathematics
Languages : en
Pages : 389
Book Description
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Classical and Multilinear Harmonic Analysis: Volume 1
Author: Camil Muscalu
Publisher: Cambridge University Press
ISBN: 1139619160
Category : Mathematics
Languages : en
Pages : 389
Book Description
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
Publisher: Cambridge University Press
ISBN: 1139619160
Category : Mathematics
Languages : en
Pages : 389
Book Description
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
Classical and Multilinear Harmonic Analysis: Volume 2
Author: Camil Muscalu
Publisher: Cambridge University Press
ISBN: 1139620460
Category : Mathematics
Languages : en
Pages : 341
Book Description
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
Publisher: Cambridge University Press
ISBN: 1139620460
Category : Mathematics
Languages : en
Pages : 341
Book Description
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
An Introduction to Harmonic Analysis
Author: Yitzhak Katznelson
Publisher:
ISBN:
Category : Harmonic analysis
Languages : en
Pages : 292
Book Description
Publisher:
ISBN:
Category : Harmonic analysis
Languages : en
Pages : 292
Book Description
Classical and Multilinear Harmonic Analysis
Author: Camil Muscalu
Publisher:
ISBN: 9781139047081
Category : Harmonic analysis
Languages : en
Pages :
Book Description
"This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained, and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary, and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form"--
Publisher:
ISBN: 9781139047081
Category : Harmonic analysis
Languages : en
Pages :
Book Description
"This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained, and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary, and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form"--
Fourier Analysis with Applications
Author: Adrian Constantin
Publisher: Cambridge University Press
ISBN: 1107044103
Category : Mathematics
Languages : en
Pages : 368
Book Description
A two-volume advanced text for graduate students. This first volume covers the theory of Fourier analysis.
Publisher: Cambridge University Press
ISBN: 1107044103
Category : Mathematics
Languages : en
Pages : 368
Book Description
A two-volume advanced text for graduate students. This first volume covers the theory of Fourier analysis.
Numerical Fourier Analysis
Author: Gerlind Plonka
Publisher: Springer
ISBN: 3030043061
Category : Mathematics
Languages : en
Pages : 624
Book Description
This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods. It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as nonequispaced and sparse FFTs in higher dimensions. Lastly, it contains a selection of numerical applications, including recent research results on nonlinear function approximation by exponential sums. The code of most of the presented algorithms is available in the authors’ public domain software packages. Students and researchers alike benefit from this unified presentation of Fourier theory and corresponding algorithms.
Publisher: Springer
ISBN: 3030043061
Category : Mathematics
Languages : en
Pages : 624
Book Description
This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods. It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as nonequispaced and sparse FFTs in higher dimensions. Lastly, it contains a selection of numerical applications, including recent research results on nonlinear function approximation by exponential sums. The code of most of the presented algorithms is available in the authors’ public domain software packages. Students and researchers alike benefit from this unified presentation of Fourier theory and corresponding algorithms.
Fourier Restriction, Decoupling and Applications
Author: Ciprian Demeter
Publisher: Cambridge University Press
ISBN: 1108499708
Category : Mathematics
Languages : en
Pages : 349
Book Description
Comprehensive coverage of recent, exciting developments in Fourier restriction theory, including applications to number theory and PDEs.
Publisher: Cambridge University Press
ISBN: 1108499708
Category : Mathematics
Languages : en
Pages : 349
Book Description
Comprehensive coverage of recent, exciting developments in Fourier restriction theory, including applications to number theory and PDEs.
Locally Convex Spaces and Harmonic Analysis: An Introduction
Author: Philippe G. Ciarlet
Publisher: SIAM
ISBN: 1611976650
Category : Mathematics
Languages : en
Pages : 203
Book Description
This self-contained textbook covers the fundamentals of two basic topics of linear functional analysis: locally convex spaces and harmonic analysis. Readers will find detailed introductions to topological vector spaces, distribution theory, weak topologies, the Fourier transform, the Hilbert transform, and Calderón–Zygmund singular integrals. An ideal introduction to more advanced texts, the book complements Ciarlet’s Linear and Nonlinear Functional Analysis with Applications (SIAM), in which these two topics were not treated. Pedagogical features such as detailed proofs and 93 problems make the book ideal for a one-semester first-year graduate course or for self-study. The book is intended for advanced undergraduates and first-year graduate students and researchers. It is appropriate for courses on functional analysis, distribution theory, Fourier transform, and harmonic analysis.
Publisher: SIAM
ISBN: 1611976650
Category : Mathematics
Languages : en
Pages : 203
Book Description
This self-contained textbook covers the fundamentals of two basic topics of linear functional analysis: locally convex spaces and harmonic analysis. Readers will find detailed introductions to topological vector spaces, distribution theory, weak topologies, the Fourier transform, the Hilbert transform, and Calderón–Zygmund singular integrals. An ideal introduction to more advanced texts, the book complements Ciarlet’s Linear and Nonlinear Functional Analysis with Applications (SIAM), in which these two topics were not treated. Pedagogical features such as detailed proofs and 93 problems make the book ideal for a one-semester first-year graduate course or for self-study. The book is intended for advanced undergraduates and first-year graduate students and researchers. It is appropriate for courses on functional analysis, distribution theory, Fourier transform, and harmonic analysis.