Circular and Linear Regression

Circular and Linear Regression PDF Author: Nikolai Chernov
Publisher: CRC Press
ISBN: 1439835918
Category : Computers
Languages : en
Pages : 285

Get Book Here

Book Description
Find the right algorithm for your image processing applicationExploring the recent achievements that have occurred since the mid-1990s, Circular and Linear Regression: Fitting Circles and Lines by Least Squares explains how to use modern algorithms to fit geometric contours (circles and circular arcs) to observed data in image processing and comput

Circular and Linear Regression

Circular and Linear Regression PDF Author: Nikolai Chernov
Publisher: CRC Press
ISBN: 1439835918
Category : Computers
Languages : en
Pages : 285

Get Book Here

Book Description
Find the right algorithm for your image processing applicationExploring the recent achievements that have occurred since the mid-1990s, Circular and Linear Regression: Fitting Circles and Lines by Least Squares explains how to use modern algorithms to fit geometric contours (circles and circular arcs) to observed data in image processing and comput

Circular and Linear Regression

Circular and Linear Regression PDF Author: Nikolai Chernov
Publisher:
ISBN: 9780429151415
Category : Curve fitting
Languages : en
Pages : 286

Get Book Here

Book Description
Find the right algorithm for your image processing applicationExploring the recent achievements that have occurred since the mid-1990s, Circular and Linear Regression: Fitting Circles and Lines by Least Squares explains how to use modern algorithms to fit geometric contours (circles and circular arcs) to observed data in image processing and computer vision. The author covers all facets-geometric, statistical, and computational-of the methods. He looks at how the numerical algorithms relate to one another through underlying ideas, compares the strengths and weaknesses of each algorithm, and il.

Topics in Circular Statistics

Topics in Circular Statistics PDF Author: S. Rao Jammalamadaka
Publisher: World Scientific
ISBN: 9810237782
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
This research monograph on circular data analysis covers some recent advances in the field, besides providing a brief introduction to, and a review of, existing methods and models. The primary focus is on recent research into topics such as change-point problems, predictive distributions, circular correlation and regression, etc. An important feature of this work is the S-plus subroutines provided for analyzing actual data sets. Coupled with the discussion of new theoretical research, the book should benefit both the researcher and the practitioner.

Multiple Regression and Beyond

Multiple Regression and Beyond PDF Author: Timothy Z. Keith
Publisher: Routledge
ISBN: 1351667939
Category : Education
Languages : en
Pages : 655

Get Book Here

Book Description
Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources

Regression Analysis

Regression Analysis PDF Author: Richard A. Berk
Publisher: SAGE
ISBN: 9780761929048
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
PLEASE UPDATE SAGE INDIA AND SAGE UK ADDRESSES ON IMPRINT PAGE.

Data Analysis with R, Second Edition

Data Analysis with R, Second Edition PDF Author: Anthony Fischetti
Publisher: Packt Publishing Ltd
ISBN: 1788397339
Category : Computers
Languages : en
Pages : 555

Get Book Here

Book Description
Learn, by example, the fundamentals of data analysis as well as several intermediate to advanced methods and techniques ranging from classification and regression to Bayesian methods and MCMC, which can be put to immediate use. Key Features Analyze your data using R – the most powerful statistical programming language Learn how to implement applied statistics using practical use-cases Use popular R packages to work with unstructured and structured data Book Description Frequently the tool of choice for academics, R has spread deep into the private sector and can be found in the production pipelines at some of the most advanced and successful enterprises. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. Starting with the basics of R and statistical reasoning, this book dives into advanced predictive analytics, showing how to apply those techniques to real-world data though with real-world examples. Packed with engaging problems and exercises, this book begins with a review of R and its syntax with packages like Rcpp, ggplot2, and dplyr. From there, get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. Solve the difficulties relating to performing data analysis in practice and find solutions to working with messy data, large data, communicating results, and facilitating reproducibility. This book is engineered to be an invaluable resource through many stages of anyone’s career as a data analyst. What you will learn Gain a thorough understanding of statistical reasoning and sampling theory Employ hypothesis testing to draw inferences from your data Learn Bayesian methods for estimating parameters Train regression, classification, and time series models Handle missing data gracefully using multiple imputation Identify and manage problematic data points Learn how to scale your analyses to larger data with Rcpp, data.table, dplyr, and parallelization Put best practices into effect to make your job easier and facilitate reproducibility Who this book is for Budding data scientists and data analysts who are new to the concept of data analysis, or who want to build efficient analytical models in R will find this book to be useful. No prior exposure to data analysis is needed, although a fundamental understanding of the R programming language is required to get the best out of this book.

Circular Statistics in R

Circular Statistics in R PDF Author: Arthur Pewsey
Publisher: OUP Oxford
ISBN: 0191650765
Category : Mathematics
Languages : en
Pages : 198

Get Book Here

Book Description
Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concrete bridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are caught in a camera trap, or in 911 calls in New York, or in internet traffic; variation throughout the year in measles incidence, global energy requirements, TV viewing figures or injuries to athletes. The natural way of representing such data graphically is as points located around the circumference of a circle, hence their name. Importantly, circular variables are periodic in nature and the origin, or zero point, such as the beginning of a new year, is defined arbitrarily rather than necessarily emerging naturally from the system. This book will be of value both to those new to circular data analysis as well as those more familiar with the field. For beginners, the authors start by considering the fundamental graphical and numerical summaries used to represent circular data before introducing distributions that might be used to model them. They go on to discuss basic forms of inference such as point and interval estimation, as well as formal significance tests for hypotheses that will often be of scientific interest. When discussing model fitting, the authors advocate reduced reliance on the classical von Mises distribution; showcasing distributions that are capable of modelling features such as asymmetry and varying levels of kurtosis that are often exhibited by circular data. The use of likelihood-based and computer-intensive approaches to inference and modelling are stressed throughout the book. The R programming language is used to implement the methodology, particularly its "circular" package. Also provided are over 150 new functions for techniques not already covered within R. This concise but authoritative guide is accessible to the diverse range of scientists who have circular data to analyse and want to do so as easily and as effectively as possible.

Regression for Categorical Data

Regression for Categorical Data PDF Author: Gerhard Tutz
Publisher: Cambridge University Press
ISBN: 1139499580
Category : Mathematics
Languages : en
Pages : 573

Get Book Here

Book Description
This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. In addition to standard methods such as the logit and probit model and extensions to multivariate settings, the author presents more recent developments in flexible and high-dimensional regression, which allow weakening of assumptions on the structuring of the predictor and yield fits that are closer to the data. A generalized linear model is used as a unifying framework whenever possible in particular parametric models that are treated within this framework. Many topics not normally included in books on categorical data analysis are treated here, such as nonparametric regression; selection of predictors by regularized estimation procedures; ternative models like the hurdle model and zero-inflated regression models for count data; and non-standard tree-based ensemble methods. The book is accompanied by an R package that contains data sets and code for all the examples.

Regression Basics

Regression Basics PDF Author: Leo H. Kahane
Publisher: SAGE Publications
ISBN: 1483317102
Category : Social Science
Languages : en
Pages : 241

Get Book Here

Book Description
Using a friendly, nontechnical approach, the Second Edition of Regression Basics introduces readers to the fundamentals of regression. Accessible to anyone with an introductory statistics background, this book builds from a simple two-variable model to a model of greater complexity. Author Leo H. Kahane weaves four engaging examples throughout the text to illustrate not only the techniques of regression but also how this empirical tool can be applied in creative ways to consider a broad array of topics. New to the Second Edition • Offers greater coverage of simple panel-data estimation: Because the availability of panel data has increased over the past decade, this new edition includes coverage of estimation with multiple cross-sections of data across time. • Provides an introductory discussion of omitted variables bias: As a problem that frequently arises, this issue is important for those new to regression analysis to understand. • Includes up-to-date advances: Chapter 7 is expanded to include recent developments in regression. • Uses a diverse selection of examples: Engaging examples illustrate the wide application of regression analysis from baseball salaries to presidential voting to British crime rates to U.S. abortion rates and more. • Includes more end-of-chapter problems: This edition offers new questions at the end of chapters that are based on the new examples woven through the book. • Illustrates examples using software programs: Appendix B now includes screenshots to further aid readers working with Microsoft Excel® and SPSS. Intended Audience This is an ideal core or supplemental text for advanced undergraduate and graduate courses such as Regression and Correlation, Sociological Research Methods, Quantitative Research Methods, and Statistical Methods in the fields of economics, public policy, political science, sociology, public affairs, urban planning, education, and geography.

Handbook of Regression Methods

Handbook of Regression Methods PDF Author: Derek Scott Young
Publisher: CRC Press
ISBN: 1351650742
Category : Mathematics
Languages : en
Pages : 507

Get Book Here

Book Description
Handbook of Regression Methods concisely covers numerous traditional, contemporary, and nonstandard regression methods. The handbook provides a broad overview of regression models, diagnostic procedures, and inference procedures, with emphasis on how these methods are applied. The organization of the handbook benefits both practitioners and researchers, who seek either to obtain a quick understanding of regression methods for specialized problems or to expand their own breadth of knowledge of regression topics. This handbook covers classic material about simple linear regression and multiple linear regression, including assumptions, effective visualizations, and inference procedures. It presents an overview of advanced diagnostic tests, remedial strategies, and model selection procedures. Finally, many chapters are devoted to a diverse range of topics, including censored regression, nonlinear regression, generalized linear models, and semiparametric regression. Features Presents a concise overview of a wide range of regression topics not usually covered in a single text Includes over 80 examples using nearly 70 real datasets, with results obtained using R Offers a Shiny app containing all examples, thus allowing access to the source code and the ability to interact with the analyses