Charge and Energy Transport in Organic Semiconductors

Charge and Energy Transport in Organic Semiconductors PDF Author: Robin Kimber
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This work describes the application of Kinetic Monte Carlo (KMC) modelling technique to organic photovoltaic (OPV) devices. Such devices are an exciting and relatively new form of photovoltaic (PV) technology, which can help bring solar power to the mass market using low energy processing methods, and materials that are cheap, and have several novel characteristics, such as being lightweight, flexible, and potentially even translucent. The modelling technique and many of the results found here are also applicable to other organic devices, such as organic light-emitting displays (OLEDs), as the underlying device physics is very similar. Following an introduction and discussions on the theoretical basis of the work and its computational implementation, the work described in the thesis falls into three main sections: Firstly, an evaluation is performed as to the accuracy of the First Reaction Method (FRM), a means of reducing the computational complexity of KMC simulations. Although this method is widely used, its accuracy when used to model OPV devices has never been satisfactorily evaluated, leading it to be questioned by some authors. Hence, its accuracy under a range of scenarios relevant for OPV simulations was tested and quantified. The findings presented here confirm its validity within the field and disorder ranges that are applicable to OPV device operation, and also give some insight into low-field geminate separation dynamics. Secondly, the KMC methodology, with the FRM approximation, is applied to the investigation of the role of device morphology in determining OPV efficiency. Morphology optimisation has frequently been identified as being key to future device design, and the KMC methodology is unique in its ability to examine this. Furthermore, as the popularity of using self-assembled bicontinuous nanostructures in OPVs grows, it is useful to evaluate their potential impact on OPV efficiency, using the insight gained from investigating morphology in general. Among the main conclusions reached from this work, it was determined that one of the key limiting factors in the efficiency of devices is the angle of the heterojunctions to the field, which is a feature of the device morphology. It was also found that, because of this, bicontinuous structures are unlikely to greatly improve OPV efficiency. Thirdly, modelling was performed in an attempt to reproduce the quantitative experimental characteristics of PFB:F8BT devices. This was achieved through first modelling individual charge mobility in the two polymers in question, and quantifying the effects of different forms of disorder. Having found disorder descriptions that could reproduce the single carrier mobility of both PFB and F8BT, as deduced by Blakesley et. al. using drift-diffusion modelling, this disorder description was applied to single layer devices, in order to deduce the injection barrier. Finally, the disorder and injection barriers deduced were combined with optical modelling to reproduce full photovoltaic behaviour. This was generally found to be successful, and therefore potentially gives some real insight into the nature of polymer disorder, whilst also validating the KMC model used in this thesis. An additional implication of this work is that the KMC model can, in the future, be applied to experimental data which cannot be satisfactorily modelled using drift-diffusion simulations.

Charge and Energy Transport in Organic Semiconductors

Charge and Energy Transport in Organic Semiconductors PDF Author: Robin Kimber
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This work describes the application of Kinetic Monte Carlo (KMC) modelling technique to organic photovoltaic (OPV) devices. Such devices are an exciting and relatively new form of photovoltaic (PV) technology, which can help bring solar power to the mass market using low energy processing methods, and materials that are cheap, and have several novel characteristics, such as being lightweight, flexible, and potentially even translucent. The modelling technique and many of the results found here are also applicable to other organic devices, such as organic light-emitting displays (OLEDs), as the underlying device physics is very similar. Following an introduction and discussions on the theoretical basis of the work and its computational implementation, the work described in the thesis falls into three main sections: Firstly, an evaluation is performed as to the accuracy of the First Reaction Method (FRM), a means of reducing the computational complexity of KMC simulations. Although this method is widely used, its accuracy when used to model OPV devices has never been satisfactorily evaluated, leading it to be questioned by some authors. Hence, its accuracy under a range of scenarios relevant for OPV simulations was tested and quantified. The findings presented here confirm its validity within the field and disorder ranges that are applicable to OPV device operation, and also give some insight into low-field geminate separation dynamics. Secondly, the KMC methodology, with the FRM approximation, is applied to the investigation of the role of device morphology in determining OPV efficiency. Morphology optimisation has frequently been identified as being key to future device design, and the KMC methodology is unique in its ability to examine this. Furthermore, as the popularity of using self-assembled bicontinuous nanostructures in OPVs grows, it is useful to evaluate their potential impact on OPV efficiency, using the insight gained from investigating morphology in general. Among the main conclusions reached from this work, it was determined that one of the key limiting factors in the efficiency of devices is the angle of the heterojunctions to the field, which is a feature of the device morphology. It was also found that, because of this, bicontinuous structures are unlikely to greatly improve OPV efficiency. Thirdly, modelling was performed in an attempt to reproduce the quantitative experimental characteristics of PFB:F8BT devices. This was achieved through first modelling individual charge mobility in the two polymers in question, and quantifying the effects of different forms of disorder. Having found disorder descriptions that could reproduce the single carrier mobility of both PFB and F8BT, as deduced by Blakesley et. al. using drift-diffusion modelling, this disorder description was applied to single layer devices, in order to deduce the injection barrier. Finally, the disorder and injection barriers deduced were combined with optical modelling to reproduce full photovoltaic behaviour. This was generally found to be successful, and therefore potentially gives some real insight into the nature of polymer disorder, whilst also validating the KMC model used in this thesis. An additional implication of this work is that the KMC model can, in the future, be applied to experimental data which cannot be satisfactorily modelled using drift-diffusion simulations.

Charge and Energy Transport in Disordered Organic Semiconductors

Charge and Energy Transport in Disordered Organic Semiconductors PDF Author: Hassan Abdalla
Publisher:
ISBN: 9789176853528
Category : Electronic books
Languages : en
Pages : 100

Get Book Here

Book Description


Physics of Organic Semiconductors

Physics of Organic Semiconductors PDF Author: Wolfgang Brütting
Publisher: John Wiley & Sons
ISBN: 3527654968
Category : Technology & Engineering
Languages : en
Pages : 660

Get Book Here

Book Description
The field of organic electronics has seen a steady growth over the last 15 years. At the same time, our scientific understanding of how to achieve optimum device performance has grown, and this book gives an overview of our present-day knowledge of the physics behind organic semiconductor devices. Based on the very successful first edition, the editors have invited top scientists from the US, Japan, and Europe to include the developments from recent years, covering such fundamental issues as: - growth and characterization of thin films of organic semiconductors, - charge transport and photophysical properties of the materials as well as their electronic structure at interfaces, and - analysis and modeling of devices like organic light-emitting diodes or organic lasers. The result is an overview of the field for both readers with basic knowledge and for an application-oriented audience. It thus bridges the gap between textbook knowledge largely based on crystalline molecular solids and those books focusing more on device applications.

Energy and Charge Transfer in Organic Semiconductors

Energy and Charge Transfer in Organic Semiconductors PDF Author: Kohzoh Masuda
Publisher: Springer Science & Business Media
ISBN: 1468421093
Category : Science
Languages : en
Pages : 187

Get Book Here

Book Description
Great progress has been made in the field of ordinary semiconductor physics and associated technologies. For the time being, if we could use new materials such as organic semiconductors progress in electronics could be accelerated. Characteristics of organic semiconductors that are superior to others are: i) high photo-conductivity under irradiation along with low leakage current in the dark, ii) high sensitivity of the conductivity to various gases and to pressure. iii) possibility of using them in the amorphous state, iv) possibility of making devices of extremely small size, v) large variety of the materials, which makes suitable choice of material component easy. A possible future development is a highly conductive material which could be used for electric power transmission - and which might help solve some of the problems posed by transmission losses. The U.S.-Japan Seminar on Energy and Charge Transfer in Organic Semiconductors was held in Osaka Japan, 6-9 August, 1973. Completed results were summarized and the direction for the future was discussed. Information was exchanged quite freely and actively in a pleasant atmosphere. Many of the papers presented at the seminar are published here but unfortunately a few could not be included. It would give us great pleasure if this seminar could be one step in the further development of the research in this field.

Charge Transport and Energy Levels in Organic Semiconductors

Charge Transport and Energy Levels in Organic Semiconductors PDF Author: Johannes Widmer
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Energy and Charge Transfer in Organic Semiconductors

Energy and Charge Transfer in Organic Semiconductors PDF Author: Marvin Silver
Publisher:
ISBN: 9781468421101
Category :
Languages : en
Pages : 216

Get Book Here

Book Description


Electronic Processes in Organic Semiconductors

Electronic Processes in Organic Semiconductors PDF Author: Anna Köhler
Publisher: John Wiley & Sons
ISBN: 3527332928
Category : Technology & Engineering
Languages : en
Pages : 436

Get Book Here

Book Description
The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.

Charge Injection and Transport in Organic Semiconductors

Charge Injection and Transport in Organic Semiconductors PDF Author: Yulong Shen
Publisher:
ISBN:
Category : Charge transfer devices (Electronics)
Languages : en
Pages : 262

Get Book Here

Book Description


Energy and Charge Transfer in Organic Semiconductors

Energy and Charge Transfer in Organic Semiconductors PDF Author: U. S. Japan Seminar on Energy and Charge Transfer Staff
Publisher:
ISBN: 9780608054735
Category :
Languages : en
Pages : 210

Get Book Here

Book Description


The (Non-)Local Density of States of Electronic Excitations in Organic Semiconductors

The (Non-)Local Density of States of Electronic Excitations in Organic Semiconductors PDF Author: Carl. R Poelking
Publisher: Springer
ISBN: 3319695991
Category : Technology & Engineering
Languages : en
Pages : 142

Get Book Here

Book Description
This book focuses on the microscopic understanding of the function of organic semiconductors. By tracing the link between their morphological structure and electronic properties across multiple scales, it represents an important advance in this direction. Organic semiconductors are materials at the interface between hard and soft matter: they combine structural variability, processibility and mechanical flexibility with the ability to efficiently transport charge and energy. This unique set of properties makes them a promising class of materials for electronic devices, including organic solar cells and light-emitting diodes. Understanding their function at the microscopic scale – the goal of this work – is a prerequisite for the rational design and optimization of the underlying materials. Based on new multiscale simulation protocols, the book studies the complex interplay between molecular architecture, supramolecular organization and electronic structure in order to reveal why some materials perform well – and why others do not. In particular, by examining the long-range effects that interrelate microscopic states and mesoscopic structure in these materials, the book provides qualitative and quantitative insights into e.g. the charge-generation process, which also serve as a basis for new optimization strategies.