Characterization of the NRAMP Family of Metal Ion Transporters

Characterization of the NRAMP Family of Metal Ion Transporters PDF Author: Yaniv Nevo
Publisher:
ISBN:
Category :
Languages : en
Pages : 178

Get Book Here

Book Description

Characterization of the NRAMP Family of Metal Ion Transporters

Characterization of the NRAMP Family of Metal Ion Transporters PDF Author: Yaniv Nevo
Publisher:
ISBN:
Category :
Languages : en
Pages : 178

Get Book Here

Book Description


The Nramp Family

The Nramp Family PDF Author: Mathieu Cellier
Publisher: Springer Science & Business Media
ISBN: 9780306478413
Category : Science
Languages : en
Pages : 226

Get Book Here

Book Description
This book is the first comprehensive volume on the "Nramp family", highlighting the physiological importance of Nramp proteins as metal transporters. The molecular knowledge of these membrane proteins is presented from an evolutionary perspective, considering Nramp cellular function and mechanism of transport in key model organisms. The pathological significance of Nramp genetic polymorphism is discussed with emphasis on metal homeostasis and microbial infection. The chapters were contributed by leading investigators, providing a timely state of the art book in this rapidly growing field. The Nramp Family will be useful to a broad community of scientists interested in metal transport and molecular biology. It will be of interest to the research audience in the broad fields of metal ions and molecular medicine.

Metal Transporters

Metal Transporters PDF Author: Jose M. Arguello
Publisher: Academic Press
ISBN: 0123943906
Category : Science
Languages : en
Pages : 478

Get Book Here

Book Description
This volume of Current Topics in Membranes focuses on metal transmembrane transporters and pumps, a recently discovered family of membrane proteins with many important roles in the physiology of living organisms. The book summarizes the most recent advances in the field of metal ion transport and provides a broad overview of the major classes of transporters involved in homeostasis of heavy metals. Various families of the transporters and metal specificities are discussed with the focus on the structural and mechanistic aspects of their function and regulation. The reader will access information obtained through a variety of approaches ranging from X-ray crystallography to cell biology and bioinformatics, which have been applied to transporters identified in diverse biological systems, such as pathogenic bacteria, plants, humans and others. Field is cutting-edge and a lot of the information is new to research community Wide breadth of topic coverage Contributors of high renown and expertise

Identification and Characterization of Several New Members of the ZIP Family of Metal Ion Transporters in Medicago Truncatula

Identification and Characterization of Several New Members of the ZIP Family of Metal Ion Transporters in Medicago Truncatula PDF Author: Ana-Flor Lopez-Millan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Characterization of Two Metal Transporters HMA3 and NRAMP1 in Two Ecotypes of the Zinc/cadmium Hyperaccumulator Thlaspi Caerulescens Compared with Arabidopsis Thaliana

Characterization of Two Metal Transporters HMA3 and NRAMP1 in Two Ecotypes of the Zinc/cadmium Hyperaccumulator Thlaspi Caerulescens Compared with Arabidopsis Thaliana PDF Author: Maria Clemencia Zambrano Mendoza
Publisher:
ISBN:
Category :
Languages : en
Pages : 498

Get Book Here

Book Description
Accumulation of a given metal in plants depends on a delicate and precise balance of various biological processes. Some plants have developed strategies that allow them to tolerate heavy metals in extreme conditions without suffering toxicity. This research focuses on the characterization of two metal transporters, a member of the P 1B -type (ATPase) transporter family (HMA3) and a member the Natural Resistance Associated Macrophage Protein (NRAMP) Nramp1 family. These transporters have proposed roles in ion homeostasis and mineral nutrition. The work here sought to determine if these transporters might have characteristics that suggest a role in heavy metal transport and tolerance in metal hyperaccumulating plants. These proteins are very well conserved among different taxa. Nonetheless, as little as a single amino acid change has the potential to modify their capacity to take up non essential metals such as Cd, or Pb, and/or increase affinity for other mineral nutrients. These transporters were cloned from a non-accumulator ( Arabidopsis thaliana L) and two ecotypes (Prayon and Ganges) of the hyperaccumulator Noccaea caerulescens (formerly= Thlaspi caerulescens). The full cDNA of an ortholog of either Nramp1 or HMA3 was expressed in yeast in order to provide a heterologous model to elucidate how polymorphisms between the orthologs might translate into functional differences between the protein sequences. A comparison of the HMA3 sequences to each other, or the Nramp1 sequences to each other, demonstrated that major motifs and domains in each protein were highly conserved but that there were numerous single amino acid polymorphisms. Few of these polymorphisms corresponded to positions in a protein that are known to be critical for transporter function. However, metal accumulation, tolerance and cell growth assays showed that the Nramp1 and HMA3 genes from Arabidopsis encoded proteins with the expected broad selectivity for divalent ion transport. In contrast, the genes from the Thlaspi ecotypes encoded proteins that showed more selectivity for ion transport. The Thlaspi ecotypes showed high selectivity for cadmium but the accumulation of other elements differed between the Thlaspi orthologs. These results suggest that the polymorphisms present in the Thlaspi sequences have produced differences in the transport characteristics of both the HMA3 and the Nramp1 transporters.

Characterization of Two Metal Transporters HMA3 and Nramp1 in Two Ecotypes of the Zn/Cd Hyperaccumulator Thlaspi Caerulescens Compared with Arabidopsis Thaliana

Characterization of Two Metal Transporters HMA3 and Nramp1 in Two Ecotypes of the Zn/Cd Hyperaccumulator Thlaspi Caerulescens Compared with Arabidopsis Thaliana PDF Author: Maria Clemencia Zambrano Mendoza
Publisher:
ISBN:
Category :
Languages : en
Pages : 267

Get Book Here

Book Description
Accumulation of a given metal in plants depends on a delicate and precise balance of various biological processes. Some plants have developed strategies that allow them to tolerate heavy metals in extreme conditions without suffering toxicity. This research focuses on the characterization of two metal transporters, a member of the P 1B -type (ATPase) transporter family (HMA3) and a member the Natural Resistance Associated Macrophage Protein (NRAMP) Nramp1 family. These transporters have proposed roles in ion homeostasis and mineral nutrition. The work here sought to determine if these transporters might have characteristics that suggest a role in heavy metal transport and tolerance in metal hyperaccumulating plants. These proteins are very well conserved among different taxa. Nonetheless, as little as a single amino acid change has the potential to modify their capacity to take up non essential metals such as Cd, or Pb, and/or increase affinity for other mineral nutrients. These transporters were cloned from a non-accumulator ( Arabidopsis thaliana L) and two ecotypes (Prayon and Ganges) of the hyperaccumulator Noccaea caerulescens (formerly= Thlaspi caerulescens). The full cDNA of an ortholog of either Nramp1 or HMA3 was expressed in yeast in order to provide a heterologous model to elucidate how polymorphisms between the orthologs might translate into functional differences between the protein sequences. A comparison of the HMA3 sequences to each other, or the Nramp1 sequences to each other, demonstrated that major motifs and domains in each protein were highly conserved but that there were numerous single amino acid polymorphisms. Few of these polymorphisms corresponded to positions in a protein that are known to be critical for transporter function. However, metal accumulation, tolerance and cell growth assays showed that the Nramp1 and HMA3 genes from Arabidopsis encoded proteins with the expected broad selectivity for divalent ion transport. In contrast, the genes from the Thlaspi ecotypes encoded proteins that showed more selectivity for ion transport. The Thlaspi ecotypes showed high selectivity for cadmium but the accumulation of other elements differed between the Thlaspi orthologs. These results suggest that the polymorphisms present in the Thlaspi sequences have produced differences in the transport characteristics of both the HMA3 and the Nramp1 transporters.

Plant Metal and Metalloid Transporters

Plant Metal and Metalloid Transporters PDF Author: Kundan Kumar
Publisher: Springer Nature
ISBN: 9811961034
Category : Science
Languages : en
Pages : 455

Get Book Here

Book Description
This edited book stands as a one place knowledge hub for plant metal(loid) transporters. The book comprehensively covers holistic aspect of metal(loid) transporters involved in uptake and translocation of essential as well as toxic metal(loid)s. Essential and beneficial metal(loid)s are required in every biological process for normal plant growth and development, however in excess they are toxic. There are toxic metal(loid)s also whose accumulation in plants interferes with normal cellular functioning and hampers growth of plants. Hence, metal(loid) uptake and accumulation in plants is a highly regulated phenomenon involving the role of several transporters, enzymes, metabolites, transcription factors and post translational modifications. The book contains chapters from the experts and the contents of the book are presented in simple language and represented through beautiful and scientifically informative figures and tables. This book is of interest to teachers, researchers, doctoral and graduate students working in the area of plant physiology, environmental biotechnology, plant biotechnology metal(loid) stress, phytoremediation and crop biofortification.

Cation Transporters in Plants

Cation Transporters in Plants PDF Author: Santosh Kumar Upadhyay
Publisher: Academic Press
ISBN: 032388573X
Category : Science
Languages : en
Pages : 488

Get Book Here

Book Description
Cation Transporters in Plants presents expert information on the major cation transporters, along with developments of various new strategies to cope with the adverse effects of abiotic and biotic stresses. The book will serve as a very important repository for the scientist, researcher, academician and industrialist to enhance their knowledge about cation transport in plants. Further, applications listed in the book will facilitate future developments in crop designing strategies. This comprehensive resource provides an alternative strategy for abiotic and biotic stress management in agricultural and horticultural crops. In addition, it will further improve basic knowledge om the origin and mechanism of cation homeostasis and their role in developmental transition and stress regulation. Contains in-depth knowledge about various cation transporters in plants Provides information about important macro and micronutrient cation transporters and their applications in the agricultural and biotechnology sectors Facilitates agricultural scientists and industries in future crop designing strategies Provides an alternative strategy for abiotic and biotic stress management in agricultural and horticultural crops

The Physiology of Microalgae

The Physiology of Microalgae PDF Author: Michael A. Borowitzka
Publisher: Springer
ISBN: 3319249452
Category : Science
Languages : en
Pages : 673

Get Book Here

Book Description
This book covers the state-of-the-art of microalgae physiology and biochemistry (and the several –omics). It serves as a key reference work for those working with microalgae, whether in the lab, the field, or for commercial applications. It is aimed at new entrants into the field (i.e. PhD students) as well as experienced practitioners. It has been over 40 years since the publication of a book on algal physiology. Apart from reviews and chapters no other comprehensive book on this topic has been published. Research on microalgae has expanded enormously since then, as has the commercial exploitation of microalgae. This volume thoroughly deals with the most critical physiological and biochemical processes governing algal growth and production.

Microbial Metabolism of Metals and Metalloids

Microbial Metabolism of Metals and Metalloids PDF Author: Christon J. Hurst
Publisher: Springer Nature
ISBN: 3030971856
Category : Science
Languages : en
Pages : 671

Get Book Here

Book Description
This book explains the metabolic processes by which microbes obtain and control the intracellular availability of their required metal and metalloid ions. The book also describes how intracellular concentrations of unwanted metal and metalloid ions successfully are limited. Its authors additionally provide information about the ways that microbes derive metabolic energy by changing the charge states of metal and metalloid ions. Part one of this book provides an introduction to microbes, metals and metalloids. It also helps our readers to understand the chemical constraints for transition metal cation allocation. Part two explains the basic processes which microbes use for metal transport. That section also explains the uses, as well as the challenges, associated with metal-based antimicrobials. Part three gives our readers an understanding that because of microbial capabilities to process metals and metalloids, the microbes have become our best tools for accomplishing many jobs. Their applications in chemical technology include the design of microbial consortia for use in bioleaching processes that recover metal and metalloid ions from industrial wastes. Many biological engineering tasks, including the synthesis of metal nanoparticles and similar metalloid structures, also are ideally suited for the microbes. Part four describes unique attributes associated with the microbiology of these elements, progressing through the alphabet from antimony and arsenic to zinc.