Characterization of the Mammalian MRNA 3' Processing Complex

Characterization of the Mammalian MRNA 3' Processing Complex PDF Author: Serena Leong Chan
Publisher:
ISBN: 9781321207552
Category :
Languages : en
Pages : 199

Get Book Here

Book Description
MRNA 3' processing, which typically involves an endonucleoytic cleavage followed by polyadenylation (addition of a string of adenosines), is an essential step in eukaryotic gene expression and significantly impacts many other gene expression steps such as transcription, splicing, mRNA export and translation (Zhao et al. 1999) (Chan et al. 2010) (Colgan et al. 1997) (Moore et al. 2009). Additionally, 3' processing is needed for gene regulation. Recent studies revealed that approximately 70% of human genes produce multiple mRNA isoforms with different 3' processing sites (Derti et al. 2012) (Hoque et al. 2013). These mRNA isoforms may encode different proteins or produce different 3' untranslated regions. This phenomenon, called alternative polyadenylation (APA), significantly expands the coding capacity of the genome and has been increasingly recognized as a critical mechanism for eukaryotic gene regulation (Di Giammartino et al. 2011) (Shi 2012) (Proudfoot 2011) (Tian et al. 2013). In addition, aberrant mRNA 3' processing causes a wide range of diseases, including IPEX syndrome, thalassemia and has been implicated in the development of cancer (Danckwardt et al. 2008) (Mayr et al. 2009). Therefore, it is critical to understand both the mechanism of mRNA 3' processing and its regulation. mRNA 3' processing requires specific RNA-protein and protein-protein interactions. The proteins required in mammals include four multi-subunit complexes and the poly (A) polymerase (PAP) while the main RNA sequences include the AAUAAA hexamer and U/G-rich elements (Zhao et al. 1999) (Chan et al. 2010) (Colgan et al. 1997). A central question in the mRNA 3' processing field has been to understand how the mRNA 3' processing sites, also called poly (A) sites, are specifically recognized and regulated. To shed light on this important question, I carried out three projects. First, comprehensive proteomic analyses of the mRNA 3' processing machinery were performed. These were accomplished by purifying all sixteen essential mRNA 3' processing factors by immunoprecipitation and identifying their associated proteins through high throughput mass spectrometry analyses. The results of this study not only provided a nearly comprehensive interactome map of the mRNA 3' processing machinery, but also revealed potential new regulatory mechanisms. I have experimentally validated the association between the mRNA 3' processing factors and some of the newly identified interacting proteins, including several ubiquitin E3 ligases, and have provided evidence that these factors regulate the stabilities of mRNA 3' processing factors. Second, I have characterized the mechanism by which the cleavage and polyadenylation specificity factor (CPSF) specifically recognizes the AAUAAA hexamer. In contrast to the prevalent model in which the CPSF subunit, CPSF 160, recognizes the AAUAAA by itself, my data provided direct evidence that the CPSF subunits, CPSF 30 and WDR33, directly bind to AAUAAA together. Additionally, I showed that the CPSF 30-RNA interaction is mediated by its zinc fingers two and three, which, remarkably, are directly targeted by the influenza A viral protein, NS1A, to suppress host mRNA 3' processing (Nemeroff et al. 1998) (Twu et al. 2006). Finally, I provide evidence that the specificity of the CPSF-RNA interaction is limited and that it requires additional factor(s) for proofreading. Together, the results from these three projects provide novel and significant insights into the fundamental mechanisms for mammalian poly(A) site recognition and regulation.

Characterization of the Mammalian MRNA 3' Processing Complex

Characterization of the Mammalian MRNA 3' Processing Complex PDF Author: Serena Leong Chan
Publisher:
ISBN: 9781321207552
Category :
Languages : en
Pages : 199

Get Book Here

Book Description
MRNA 3' processing, which typically involves an endonucleoytic cleavage followed by polyadenylation (addition of a string of adenosines), is an essential step in eukaryotic gene expression and significantly impacts many other gene expression steps such as transcription, splicing, mRNA export and translation (Zhao et al. 1999) (Chan et al. 2010) (Colgan et al. 1997) (Moore et al. 2009). Additionally, 3' processing is needed for gene regulation. Recent studies revealed that approximately 70% of human genes produce multiple mRNA isoforms with different 3' processing sites (Derti et al. 2012) (Hoque et al. 2013). These mRNA isoforms may encode different proteins or produce different 3' untranslated regions. This phenomenon, called alternative polyadenylation (APA), significantly expands the coding capacity of the genome and has been increasingly recognized as a critical mechanism for eukaryotic gene regulation (Di Giammartino et al. 2011) (Shi 2012) (Proudfoot 2011) (Tian et al. 2013). In addition, aberrant mRNA 3' processing causes a wide range of diseases, including IPEX syndrome, thalassemia and has been implicated in the development of cancer (Danckwardt et al. 2008) (Mayr et al. 2009). Therefore, it is critical to understand both the mechanism of mRNA 3' processing and its regulation. mRNA 3' processing requires specific RNA-protein and protein-protein interactions. The proteins required in mammals include four multi-subunit complexes and the poly (A) polymerase (PAP) while the main RNA sequences include the AAUAAA hexamer and U/G-rich elements (Zhao et al. 1999) (Chan et al. 2010) (Colgan et al. 1997). A central question in the mRNA 3' processing field has been to understand how the mRNA 3' processing sites, also called poly (A) sites, are specifically recognized and regulated. To shed light on this important question, I carried out three projects. First, comprehensive proteomic analyses of the mRNA 3' processing machinery were performed. These were accomplished by purifying all sixteen essential mRNA 3' processing factors by immunoprecipitation and identifying their associated proteins through high throughput mass spectrometry analyses. The results of this study not only provided a nearly comprehensive interactome map of the mRNA 3' processing machinery, but also revealed potential new regulatory mechanisms. I have experimentally validated the association between the mRNA 3' processing factors and some of the newly identified interacting proteins, including several ubiquitin E3 ligases, and have provided evidence that these factors regulate the stabilities of mRNA 3' processing factors. Second, I have characterized the mechanism by which the cleavage and polyadenylation specificity factor (CPSF) specifically recognizes the AAUAAA hexamer. In contrast to the prevalent model in which the CPSF subunit, CPSF 160, recognizes the AAUAAA by itself, my data provided direct evidence that the CPSF subunits, CPSF 30 and WDR33, directly bind to AAUAAA together. Additionally, I showed that the CPSF 30-RNA interaction is mediated by its zinc fingers two and three, which, remarkably, are directly targeted by the influenza A viral protein, NS1A, to suppress host mRNA 3' processing (Nemeroff et al. 1998) (Twu et al. 2006). Finally, I provide evidence that the specificity of the CPSF-RNA interaction is limited and that it requires additional factor(s) for proofreading. Together, the results from these three projects provide novel and significant insights into the fundamental mechanisms for mammalian poly(A) site recognition and regulation.

Analysis of the Mammalian Pre-mRNA 3'end Processing Cleavage Complex and Attempts of Its Reconstitution

Analysis of the Mammalian Pre-mRNA 3'end Processing Cleavage Complex and Attempts of Its Reconstitution PDF Author: Anne Ulrika Knoth
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Characterization of New Components Involved in Yeast and Mammalian Pre-mRNA 3'-end Processing

Characterization of New Components Involved in Yeast and Mammalian Pre-mRNA 3'-end Processing PDF Author: Wolfgang Hübner
Publisher:
ISBN:
Category :
Languages : en
Pages : 221

Get Book Here

Book Description


mRNA Processing and Metabolism

mRNA Processing and Metabolism PDF Author: Daniel R. Schoenberg
Publisher: Springer Science & Business Media
ISBN: 1592597505
Category : Science
Languages : en
Pages : 277

Get Book Here

Book Description
Cells possess a wealth of posttranscriptional control mechanisms that impact on every conceivable aspect of the life of an mRNA. These processes are intimately intertwined in an almost baroque manner, where promoter context influences the recruitment of splicing factors, where the majority of pre-mRNAs undergo alternative splicing, and where proteins deposited during nuclear processing impact distal cytoplasmic processing, translation, and decay. If there is a unifying theme to mRNA Processing and Metabolism: Methods and Protocols, it is that mRNA processing and metabolism are integrated processes. Many of the techniques used to study mRNA have been described in a previous volume of this series (RNA–Protein Interaction Protocols, Susan Haynes, ed.) and specialized methods journals. In selecting topics for mRNA Processing and Metabolism: Methods and Protocols, I sought input on new and novel techniques and approaches that build on this foundation using technological advances in microscopy, whole genome sequencing, microarrays, mass spectrometry, fluorescent detection methodologies, and RNA interference. I have tried not to bias this book toward any single model organism, and approaches described in the various chapters use yeast, Drosophila, Xenopus, mice, plants, and cultured mammalian cells.

Eukaryotic MRNA Processing

Eukaryotic MRNA Processing PDF Author: Adrian Krainer
Publisher: IRL Press
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 408

Get Book Here

Book Description
This volume focuses on the major aspects of post-transcriptional mRNA processing in the nucleus of eukaryotic cells. Each of the described mRNA reactions is required for proper gene expression and can also serve as a control point for regulating the expression of many genes, for example duringembryonic development or in different cell types. The different chapters review the assembly of newly synthesized nuclear mRNA transcripts into hnRNP particles and catalytically active spliceosomes; the structure and mechanism of action of small nuclear ribonucleoprotein particles and proteinfactors that catalyse pre-mRNA splicing in mammalian cells and in yeast; the regulation of gene expression and generation of protein isoform diversity by alternative splicing; the mechanisms of 3' end cleavage and polyadenylation; the architecture of the cell nucleus in relation to these processesand to the localization of the relevant substrates and factors; the diverse mechanisms of RNA processing by ribozymes and their potential relevance for nuclear mRNA processing; the mechanism of spliced-leader addition by trans-splicing in nematodes and trypanosomes; and the process ofinsertion/deletion mRNA editing in kinetoplasmid protozoa. In each chapter, leading researchers have provided detailed, critical reviews of the history, experimental approaches, major advances, current ideas and models, as well as future directions, for each of these active areas of research.

Analysis and Immunocytological Characterization of Components Involved in the 3'-end Processing and Editing of Mammalian Messenger RNA Precursors

Analysis and Immunocytological Characterization of Components Involved in the 3'-end Processing and Editing of Mammalian Messenger RNA Precursors PDF Author: Sabine Krause
Publisher:
ISBN:
Category :
Languages : en
Pages : 216

Get Book Here

Book Description


Protein Synthesis and Ribosome Structure

Protein Synthesis and Ribosome Structure PDF Author: Knud H. Nierhaus
Publisher: John Wiley & Sons
ISBN: 9783527306381
Category : Science
Languages : en
Pages : 608

Get Book Here

Book Description
Knud Nierhaus, who has studied the ribosome for more than 30 years, has assembled here the combined efforts of several scientific disciplines into a uniform picture of the largest enzyme complex found in living cells, finally resolving many decades-old questions in molecular biology. In so doing he considers virtually all aspects of ribosome structure and function -- from the molecular mechanism of different ribosomal ribozyme activities to their selective inhibition by antibiotics, from assembly of the core particle to the regulation of ribosome component synthesis. The result is a premier resource for anyone with an interest in ribosomal protein synthesis, whether in the context of molecular biology, biotechnology, pharmacology or molecular medicine.

Structural and Biochemical Studies of the Human Pre-mRNA 3'-end Processing Complex

Structural and Biochemical Studies of the Human Pre-mRNA 3'-end Processing Complex PDF Author: Keith Hamilton
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Most eukaryotic pre-mRNAs undergo 3′-end cleavage and polyadenylation prior to their export from the nucleus. A large number of proteins in several complexes participate in this 3′-end processing, including cleavage and polyadenylation specificity factor (CPSF) in mammals. The CPSF can be further divided into two sub-complexes: mPSF (mammalian polyadenylation specificity factor) which recognizes the AAUAAA polyadenylation signal (PAS) in the pre- mRNA, and mCF (mammalian cleavage factor) which cleaves the RNA. mPSF consists of CPSF160, CPSF30, WDR33, and hFip1. This thesis shows that AAUAAA PAS is recognized with ∼3 nM affinity by the CPSF160-WDR33-CPSF30 ternary complex, while the proteins alone or the binary complexes do not bind the PAS with high affinity. Furthermore, it is shown that mutations of residues in CPSF30 that have van der Waals interactions with the bases of the PAS lead to a sharp reduction in the affinity. Finally, variations of the AAUAAA or removing the bases downstream also reduce the binding significantly.

Molecular Characterization of the Mammalian Pre-mRNA Splicing Factor SF1

Molecular Characterization of the Mammalian Pre-mRNA Splicing Factor SF1 PDF Author: Silke Backes
Publisher:
ISBN:
Category :
Languages : en
Pages : 256

Get Book Here

Book Description


Histone Genes

Histone Genes PDF Author: Gary S. Stein
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 520

Get Book Here

Book Description