Characterization of Bonded Copper Interconnects for 3D ICs

Characterization of Bonded Copper Interconnects for 3D ICs PDF Author: Rajappa Tadepalli
Publisher:
ISBN:
Category :
Languages : en
Pages : 108

Get Book Here

Book Description

Characterization of Bonded Copper Interconnects for 3D ICs

Characterization of Bonded Copper Interconnects for 3D ICs PDF Author: Rajappa Tadepalli
Publisher:
ISBN:
Category :
Languages : en
Pages : 108

Get Book Here

Book Description


Characterization and Modeling of Pattern Dependencies in Copper Interconnects for Integrated Circuits

Characterization and Modeling of Pattern Dependencies in Copper Interconnects for Integrated Circuits PDF Author: Tae Hong Park
Publisher:
ISBN:
Category :
Languages : en
Pages : 204

Get Book Here

Book Description
(Cont.) Especially for the multi-level studies, electrical test structures and measurements in addition to surface profile scans are seen to be important in accurately determining thickness variations. The developed test vehicle and characterization of copper dishing and oxide erosion serve as a basis for further pattern dependent model development. Finally, integration of electroplating and CMP chip-scale models is illustrated; the simulated step and array heights as well as topography pattern density are used as an input for the initial starting topography for CMP simulation of subsequent polishing profile evolution.

Direct Copper Interconnection for Advanced Semiconductor Technology

Direct Copper Interconnection for Advanced Semiconductor Technology PDF Author: Dongkai Shangguan
Publisher: CRC Press
ISBN: 1040028640
Category : Technology & Engineering
Languages : en
Pages : 463

Get Book Here

Book Description
In the “More than Moore” era, performance requirements for leading edge semiconductor devices are demanding extremely fine pitch interconnection in semiconductor packaging. Direct copper interconnection has emerged as the technology of choice in the semiconductor industry for fine pitch interconnection, with significant benefits for interconnect density and device performance. Low-temperature direct copper bonding, in particular, will become widely adopted for a broad range of highperformance semiconductor devices in the years to come. This book offers a comprehensive review and in-depth discussions of the key topics in this critical new technology. Chapter 1 reviews the evolution and the most recent advances in semiconductor packaging, leading to the requirement for extremely fine pitch interconnection, and Chapter 2 reviews different technologies for direct copper interconnection, with advantages and disadvantages for various applications. Chapter 3 offers an in-depth review of the hybrid bonding technology, outlining the critical processes and solutions. The area of materials for hybrid bonding is covered in Chapter 4, followed by several chapters that are focused on critical process steps and equipment for copper electrodeposition (Chapter 5), planarization (Chapter 6), wafer bonding (Chapter 7), and die bonding (Chapter 8). Aspects related to product applications are covered in Chapter 9 for design and Chapter 10 for thermal simulation. Finally, Chapter 11 covers reliability considerations and computer modeling for process and performance characterization, followed by the final chapter (Chapter 12) outlining the current and future applications of the hybrid bonding technology. Metrology and testing are also addressed throughout the chapters. Business, economic, and supply chain considerations are discussed as related to the product applications and manufacturing deployment of the technology, and the current status and future outlook as related to the various aspects of the ecosystem are outlined in the relevant chapters of the book. The book is aimed at academic and industry researchers as well as industry practitioners, and is intended to serve as a comprehensive source of the most up-to-date knowledge, and a review of the state-of-the art of the technology and applications, for direct copper interconnection and advanced semiconductor packaging in general.

Handbook of Wafer Bonding

Handbook of Wafer Bonding PDF Author: Peter Ramm
Publisher: John Wiley & Sons
ISBN: 3527644237
Category : Technology & Engineering
Languages : en
Pages : 435

Get Book Here

Book Description
The focus behind this book on wafer bonding is the fast paced changes in the research and development in three-dimensional (3D) integration, temporary bonding and micro-electro-mechanical systems (MEMS) with new functional layers. Written by authors and edited by a team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies. Part I sorts the wafer bonding technologies into four categories: Adhesive and Anodic Bonding; Direct Wafer Bonding; Metal Bonding; and Hybrid Metal/Dielectric Bonding. Part II summarizes the key wafer bonding applications developed recently, that is, 3D integration, MEMS, and temporary bonding, to give readers a taste of the significant applications of wafer bonding technologies. This book is aimed at materials scientists, semiconductor physicists, the semiconductor industry, IT engineers, electrical engineers, and libraries.

Copper Interconnects, New Contact Metallurgies/structures, and Low-k Interlevel Dielectrics II

Copper Interconnects, New Contact Metallurgies/structures, and Low-k Interlevel Dielectrics II PDF Author: G. S. Mathad
Publisher: The Electrochemical Society
ISBN: 9781566773904
Category : Science
Languages : en
Pages : 290

Get Book Here

Book Description


Handbook of 3D Integration, Volume 1

Handbook of 3D Integration, Volume 1 PDF Author: Philip Garrou
Publisher: John Wiley & Sons
ISBN: 352762306X
Category : Technology & Engineering
Languages : en
Pages : 798

Get Book Here

Book Description
The first encompassing treatise of this new, but very important field puts the known physical limitations for classic 2D electronics into perspective with the requirements for further electronics developments and market necessities. This two-volume handbook presents 3D solutions to the feature density problem, addressing all important issues, such as wafer processing, die bonding, packaging technology, and thermal aspects. It begins with an introductory part, which defines necessary goals, existing issues and relates 3D integration to the semiconductor roadmap of the industry. Before going on to cover processing technology and 3D structure fabrication strategies in detail. This is followed by fields of application and a look at the future of 3D integration. The contributions come from key players in the field, from both academia and industry, including such companies as Lincoln Labs, Fraunhofer, RPI, ASET, IMEC, CEA-LETI, IBM, and Renesas.

3D Integration in VLSI Circuits

3D Integration in VLSI Circuits PDF Author: Katsuyuki Sakuma
Publisher: CRC Press
ISBN: 1351779834
Category : Technology & Engineering
Languages : en
Pages : 217

Get Book Here

Book Description
Currently, the term 3D integration includes a wide variety of different integration methods, such as 2.5-dimensional (2.5D) interposer-based integration, 3D integrated circuits (3D ICs), 3D systems-in-package (SiP), 3D heterogeneous integration, and monolithic 3D ICs. The goal of this book is to provide readers with an understanding of the latest challenges and issues in 3D integration. TSVs are not the only technology element needed for 3D integration. There are numerous other key enabling technologies required for 3D integration, and the speed of the development in this emerging field is very rapid. To provide readers with state-of-the-art information on 3D integration research and technology developments, each chapter has been contributed by some of the world’s leading scientists and experts from academia, research institutes, and industry from around the globe. Covers chip/wafer level 3D integration technology, memory stacking, reconfigurable 3D, and monolithic 3D IC. Discusses the use of silicon interposer and organic interposer. Presents architecture, design, and technology implementations for 3D FPGA integration. Describes oxide bonding, Cu/SiO2 hybrid bonding, adhesive bonding, and solder bonding. Addresses the issue of thermal dissipation in 3D integration.

Characterization and Requirements for Copper-copper Bonds for 3D IC

Characterization and Requirements for Copper-copper Bonds for 3D IC PDF Author: Rajappa Tadepalli
Publisher:
ISBN:
Category :
Languages : en
Pages : 206

Get Book Here

Book Description
(Cont.) Deliberate pre-adhesion exposure of the Cu surfaces to 10-6 Torr O2 leads to a dramatic reduction in adhesion (to 0.1 J/m2), suggesting the formation of a Cu oxide that is detrimental to the Cu-Cu bonding process. The UHV-AFM measurements suggest that strong Cu-Cu bonds can be created by bonding clean Cu surfaces at room temperature, thereby eliminating several thermal stability issues in the thermocompression bonding process. The thermal management problem in 3D ICs containing multiple device layers was examined using an analytical model of forced liquid cooling via Cu-sealed integrated microchannels. Integration of microchannels requires a reduction in the area available for interconnects and adhesion, causing a trade-off between the inter-layer bonded area and the size and density of the channels that can be included. The optimum channel density is a function of the achievable local Cu-Cu bond strength.

Copper Interconnect Technology

Copper Interconnect Technology PDF Author: Tapan Gupta
Publisher: Springer Science & Business Media
ISBN: 1441900764
Category : Technology & Engineering
Languages : en
Pages : 433

Get Book Here

Book Description
Since overall circuit performance has depended primarily on transistor properties, previous efforts to enhance circuit and system speed were focused on transistors as well. During the last decade, however, the parasitic resistance, capacitance, and inductance associated with interconnections began to influence circuit performance and will be the primary factors in the evolution of nanoscale ULSI technology. Because metallic conductivity and resistance to electromigration of bulk copper (Cu) are better than aluminum, use of copper and low-k materials is now prevalent in the international microelectronics industry. As the feature size of the Cu-lines forming interconnects is scaled, resistivity of the lines increases. At the same time electromigration and stress-induced voids due to increased current density become significant reliability issues. Although copper/low-k technology has become fairly mature, there is no single book available on the promise and challenges of these next-generation technologies. In this book, a leader in the field describes advanced laser systems with lower radiation wavelengths, photolithography materials, and mathematical modeling approaches to address the challenges of Cu-interconnect technology.

Handbook of 3D Integration, Volume 3

Handbook of 3D Integration, Volume 3 PDF Author: Philip Garrou
Publisher: John Wiley & Sons
ISBN: 3527334661
Category : Technology & Engineering
Languages : en
Pages : 484

Get Book Here

Book Description
Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology. As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading for materials scientists, semiconductor physicists, and those working in the semiconductor industry, as well as IT and electrical engineers.