Character Theory for the Odd Order Theorem

Character Theory for the Odd Order Theorem PDF Author: Thomas Peterfalvi
Publisher: Cambridge University Press
ISBN: 9780521646604
Category : Mathematics
Languages : en
Pages : 166

Get Book Here

Book Description
The famous and important theorem of W. Feit and J. G. Thompson states that every group of odd order is solvable, and the proof of this has roughly two parts. The first part appeared in Bender and Glauberman's Local Analysis for the Odd Order Theorem which was number 188 in this series. This book provides the character-theoretic second part and thus completes the proof. All researchers in group theory should have a copy of this book in their library.

Character Theory for the Odd Order Theorem

Character Theory for the Odd Order Theorem PDF Author: Thomas Peterfalvi
Publisher: Cambridge University Press
ISBN: 9780521646604
Category : Mathematics
Languages : en
Pages : 166

Get Book Here

Book Description
The famous and important theorem of W. Feit and J. G. Thompson states that every group of odd order is solvable, and the proof of this has roughly two parts. The first part appeared in Bender and Glauberman's Local Analysis for the Odd Order Theorem which was number 188 in this series. This book provides the character-theoretic second part and thus completes the proof. All researchers in group theory should have a copy of this book in their library.

Local Analysis for the Odd Order Theorem

Local Analysis for the Odd Order Theorem PDF Author: Helmut Bender
Publisher: Cambridge University Press
ISBN: 0521457165
Category : Mathematics
Languages : en
Pages : 188

Get Book Here

Book Description
The book presents a new version of the local analysis section of the Feit-Thompson theorem.

Character Theory of Finite Groups

Character Theory of Finite Groups PDF Author: I. Martin Isaacs
Publisher: American Mathematical Soc.
ISBN: 0821842293
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
Character theory is a powerful tool for understanding finite groups. In particular, the theory has been a key ingredient in the classification of finite simple groups. Characters are also of interest in their own right, and their properties are closely related to properties of the structure of the underlying group. The book begins by developing the module theory of complex group algebras. After the module-theoretic foundations are laid in the first chapter, the focus is primarily on characters. This enhances the accessibility of the material for students, which was a major consideration in the writing. Also with students in mind, a large number of problems are included, many of them quite challenging. In addition to the development of the basic theory (using a cleaner notation than previously), a number of more specialized topics are covered with accessible presentations. These include projective representations, the basics of the Schur index, irreducible character degrees and group structure, complex linear groups, exceptional characters, and a fairly extensive introduction to blocks and Brauer characters. This is a corrected reprint of the original 1976 version, later reprinted by Dover. Since 1976 it has become the standard reference for character theory, appearing in the bibliography of almost every research paper in the subject. It is largely self-contained, requiring of the reader only the most basic facts of linear algebra, group theory, Galois theory and ring and module theory.

A Course in Finite Group Representation Theory

A Course in Finite Group Representation Theory PDF Author: Peter Webb
Publisher: Cambridge University Press
ISBN: 1107162394
Category : Mathematics
Languages : en
Pages : 339

Get Book Here

Book Description
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.

Representation Theory of Finite Groups

Representation Theory of Finite Groups PDF Author: Benjamin Steinberg
Publisher: Springer Science & Business Media
ISBN: 1461407761
Category : Mathematics
Languages : en
Pages : 166

Get Book Here

Book Description
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.

Representations and Characters of Groups

Representations and Characters of Groups PDF Author: Gordon James
Publisher: Cambridge University Press
ISBN: 1139811053
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
This book provides a modern introduction to the representation theory of finite groups. Now in its second edition, the authors have revised the text and added much new material. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. Included here are the character tables of all groups of order less than 32, and all simple groups of order less than 1000. Applications covered include Burnside's paqb theorem, the use of character theory in studying subgroup structure and permutation groups, and how to use representation theory to investigate molecular vibration. Each chapter features a variety of exercises, with full solutions provided at the end of the book. This will be ideal as a course text in representation theory, and in view of the applications, will be of interest to chemists and physicists as well as mathematicians.

Introduction to Representation Theory

Introduction to Representation Theory PDF Author: Pavel I. Etingof
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.

The Classification of the Finite Simple Groups, Number 3

The Classification of the Finite Simple Groups, Number 3 PDF Author: Daniel Gorenstein
Publisher: American Mathematical Soc.
ISBN: 9780821803912
Category : Finite simple groups
Languages : en
Pages : 446

Get Book Here

Book Description
Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR

Theory of Groups of Finite Order

Theory of Groups of Finite Order PDF Author: William S. Burnside
Publisher: Courier Corporation
ISBN: 0486159442
Category : Mathematics
Languages : en
Pages : 545

Get Book Here

Book Description
Classic 1911 edition covers many group-related properties, including an extensive treatment of permutation groups and groups of linear substitutions, along with graphic representation of groups, congruence groups, and special topics.

Representations and Characters of Finite Groups

Representations and Characters of Finite Groups PDF Author: M. J. Collins
Publisher: Cambridge University Press
ISBN: 9780521234405
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
Representation theory and character theory have proved essential in the study of finite simple groups since their early development by Frobenius. The author begins by presenting the foundations of character theory in a style accessible to advanced undergraduates that requires only a basic knowledge of group theory and general algebra. This theme is then expanded in a self-contained account providing an introduction to the application of character theory to the classification of simple groups. The book follows both strands of the theory: the exceptional characteristics of Suzuki and Feit and the block character theory of Brauer and includes refinements of original proofs that have become available as the subject has grown.