Author: David Ruelle
Publisher: Cambridge University Press
ISBN: 9780521368308
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book, based on lectures given at the Accademia dei Lincei, is an accessible and leisurely account of systems that display a chaotic time evolution. This behaviour, though deterministic, has features more characteristic of stochastic systems. The analysis here is based on a statistical technique known as time series analysis and so avoids complex mathematics, yet provides a good understanding of the fundamentals. Professor Ruelle is one of the world's authorities on chaos and dynamical systems and his account here will be welcomed by scientists in physics, engineering, biology, chemistry and economics who encounter nonlinear systems in their research.
Chaotic Evolution and Strange Attractors
Author: David Ruelle
Publisher: Cambridge University Press
ISBN: 9780521368308
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book, based on lectures given at the Accademia dei Lincei, is an accessible and leisurely account of systems that display a chaotic time evolution. This behaviour, though deterministic, has features more characteristic of stochastic systems. The analysis here is based on a statistical technique known as time series analysis and so avoids complex mathematics, yet provides a good understanding of the fundamentals. Professor Ruelle is one of the world's authorities on chaos and dynamical systems and his account here will be welcomed by scientists in physics, engineering, biology, chemistry and economics who encounter nonlinear systems in their research.
Publisher: Cambridge University Press
ISBN: 9780521368308
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book, based on lectures given at the Accademia dei Lincei, is an accessible and leisurely account of systems that display a chaotic time evolution. This behaviour, though deterministic, has features more characteristic of stochastic systems. The analysis here is based on a statistical technique known as time series analysis and so avoids complex mathematics, yet provides a good understanding of the fundamentals. Professor Ruelle is one of the world's authorities on chaos and dynamical systems and his account here will be welcomed by scientists in physics, engineering, biology, chemistry and economics who encounter nonlinear systems in their research.
Chaotic Evolution and Strange Attractors
Author: David Ruelle
Publisher:
ISBN:
Category :
Languages : en
Pages : 96
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 96
Book Description
The Theory of Chaotic Attractors
Author: Brian R. Hunt
Publisher: Springer Science & Business Media
ISBN: 9780387403496
Category : Mathematics
Languages : en
Pages : 528
Book Description
The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.
Publisher: Springer Science & Business Media
ISBN: 9780387403496
Category : Mathematics
Languages : en
Pages : 528
Book Description
The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.
Turbulence, Strange Attractors, and Chaos
Author: David Ruelle
Publisher: World Scientific
ISBN: 9789810223106
Category : Science
Languages : en
Pages : 496
Book Description
The present collection of reprints covers the main contributions of David Ruelle, and coauthors, to the theory of chaos and its applications. Several of the papers reproduced here are classics in the field. Others (that were published in less accessible places) may still surprise the reader.The collection contains mathematical articles relevant to chaos, specific articles on the theory, and articles on applications to hydrodynamical turbulence, chemical oscillations, etc.A sound judgement of the value of techniques and applications is crucial in the interdisciplinary field of chaos. For a critical assessment of what has been achieved in this area, the present volume is an invaluable contribution.
Publisher: World Scientific
ISBN: 9789810223106
Category : Science
Languages : en
Pages : 496
Book Description
The present collection of reprints covers the main contributions of David Ruelle, and coauthors, to the theory of chaos and its applications. Several of the papers reproduced here are classics in the field. Others (that were published in less accessible places) may still surprise the reader.The collection contains mathematical articles relevant to chaos, specific articles on the theory, and articles on applications to hydrodynamical turbulence, chemical oscillations, etc.A sound judgement of the value of techniques and applications is crucial in the interdisciplinary field of chaos. For a critical assessment of what has been achieved in this area, the present volume is an invaluable contribution.
Chaos in Ecology
Author: J. M. Cushing
Publisher: Elsevier
ISBN: 9780121988760
Category : Mathematics
Languages : en
Pages : 248
Book Description
Chaos in Ecology is a convincing demonstration of chaos in a biological population. The book synthesizes an ecologically focused interdisciplinary blend of non-linear dynamics theory, statistics, and experimentation yielding results of uncommon clarity and rigor. Topics include fundamental issues that are of general and widespread importance to population biology and ecology. Detailed descriptions are included of the mathematical, statistical, and experimental steps they used to explore nonlinear dynamics in ecology. Beginning with a brief overview of chaos theory and its implications for ecology. The book continues by deriving and rigorously testing a mathematical model that is closely wedded to biological mechanisms of their research organism. Therefrom were generated a variety of predictions that are fundamental to chaos theory and experiments were designed and analyzed to test those predictions. Discussion of patterns in chaos and how they can be investigated using real data follows and book ends with a discussion of the salient lessons learned from this research program Book jacket.
Publisher: Elsevier
ISBN: 9780121988760
Category : Mathematics
Languages : en
Pages : 248
Book Description
Chaos in Ecology is a convincing demonstration of chaos in a biological population. The book synthesizes an ecologically focused interdisciplinary blend of non-linear dynamics theory, statistics, and experimentation yielding results of uncommon clarity and rigor. Topics include fundamental issues that are of general and widespread importance to population biology and ecology. Detailed descriptions are included of the mathematical, statistical, and experimental steps they used to explore nonlinear dynamics in ecology. Beginning with a brief overview of chaos theory and its implications for ecology. The book continues by deriving and rigorously testing a mathematical model that is closely wedded to biological mechanisms of their research organism. Therefrom were generated a variety of predictions that are fundamental to chaos theory and experiments were designed and analyzed to test those predictions. Discussion of patterns in chaos and how they can be investigated using real data follows and book ends with a discussion of the salient lessons learned from this research program Book jacket.
Chaos in Dynamical Systems
Author: Edward Ott
Publisher: Cambridge University Press
ISBN: 9780521010849
Category : Mathematics
Languages : en
Pages : 500
Book Description
Over the past two decades scientists, mathematicians, and engineers have come to understand that a large variety of systems exhibit complicated evolution with time. This complicated behavior is known as chaos. In the new edition of this classic textbook Edward Ott has added much new material and has significantly increased the number of homework problems. The most important change is the addition of a completely new chapter on control and synchronization of chaos. Other changes include new material on riddled basins of attraction, phase locking of globally coupled oscillators, fractal aspects of fluid advection by Lagrangian chaotic flows, magnetic dynamos, and strange nonchaotic attractors. This new edition will be of interest to advanced undergraduates and graduate students in science, engineering, and mathematics taking courses in chaotic dynamics, as well as to researchers in the subject.
Publisher: Cambridge University Press
ISBN: 9780521010849
Category : Mathematics
Languages : en
Pages : 500
Book Description
Over the past two decades scientists, mathematicians, and engineers have come to understand that a large variety of systems exhibit complicated evolution with time. This complicated behavior is known as chaos. In the new edition of this classic textbook Edward Ott has added much new material and has significantly increased the number of homework problems. The most important change is the addition of a completely new chapter on control and synchronization of chaos. Other changes include new material on riddled basins of attraction, phase locking of globally coupled oscillators, fractal aspects of fluid advection by Lagrangian chaotic flows, magnetic dynamos, and strange nonchaotic attractors. This new edition will be of interest to advanced undergraduates and graduate students in science, engineering, and mathematics taking courses in chaotic dynamics, as well as to researchers in the subject.
Dynamical Social Psychology
Author: Andrzej Nowak
Publisher: Guilford Press
ISBN: 9781572303539
Category : Psychology
Languages : en
Pages : 338
Book Description
Traditional approaches to social psychology have proven highly successful in identifying causal mechanisms underlying human thought and behavior. With the recent advent of the dynamical approach, it is now possible to assemble sets of such mechanisms into coherent systems. This book uses innovative concepts and tools to illuminate the processes by which individuals, groups, and societies evolve and change in a systemic, self-sustaining manner, at times seemingly independent of external influences. Readers learn how the dynamical approach facilitates novel predictions and insights into such social psychological phenomena as attitudes, social judgment, goal-directed behavior, attraction, and relationships. Featuring a wealth of charts and figures derived from original research and computer simulations, the volume is grounded in classic and contemporary theories of social psychology.
Publisher: Guilford Press
ISBN: 9781572303539
Category : Psychology
Languages : en
Pages : 338
Book Description
Traditional approaches to social psychology have proven highly successful in identifying causal mechanisms underlying human thought and behavior. With the recent advent of the dynamical approach, it is now possible to assemble sets of such mechanisms into coherent systems. This book uses innovative concepts and tools to illuminate the processes by which individuals, groups, and societies evolve and change in a systemic, self-sustaining manner, at times seemingly independent of external influences. Readers learn how the dynamical approach facilitates novel predictions and insights into such social psychological phenomena as attitudes, social judgment, goal-directed behavior, attraction, and relationships. Featuring a wealth of charts and figures derived from original research and computer simulations, the volume is grounded in classic and contemporary theories of social psychology.
Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations
Author: Jacob Palis JĂșnior
Publisher: Cambridge University Press
ISBN: 9780521475723
Category : Mathematics
Languages : en
Pages : 248
Book Description
A self-contained introduction to the classical theory and its generalizations, aimed at mathematicians and scientists working in dynamical systems.
Publisher: Cambridge University Press
ISBN: 9780521475723
Category : Mathematics
Languages : en
Pages : 248
Book Description
A self-contained introduction to the classical theory and its generalizations, aimed at mathematicians and scientists working in dynamical systems.
Chaotic Dynamics
Author: Alfredo Medio
Publisher: Cambridge University Press
ISBN: 9780521484619
Category : Business & Economics
Languages : en
Pages : 368
Book Description
The modelling of economic models by means of dynamic systems.
Publisher: Cambridge University Press
ISBN: 9780521484619
Category : Business & Economics
Languages : en
Pages : 368
Book Description
The modelling of economic models by means of dynamic systems.
Chaos
Author: Kathleen Alligood
Publisher: Springer
ISBN: 3642592813
Category : Mathematics
Languages : en
Pages : 620
Book Description
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.
Publisher: Springer
ISBN: 3642592813
Category : Mathematics
Languages : en
Pages : 620
Book Description
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.