Chaos and Dynamical Systems

Chaos and Dynamical Systems PDF Author: David P. Feldman
Publisher: Princeton University Press
ISBN: 0691161526
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, important and exciting areas that have shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.

Chaos and Dynamical Systems

Chaos and Dynamical Systems PDF Author: David P. Feldman
Publisher: Princeton University Press
ISBN: 0691161526
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, important and exciting areas that have shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.

Bifurcation and Chaos in Simple Dynamical Systems

Bifurcation and Chaos in Simple Dynamical Systems PDF Author: Jan Awrejcewicz
Publisher: World Scientific
ISBN: 9789810200381
Category : Science
Languages : en
Pages : 148

Get Book Here

Book Description
This book presents a detailed analysis of bifurcation and chaos in simple non-linear systems, based on previous works of the author. Practical examples for mechanical and biomechanical systems are discussed. The use of both numerical and analytical approaches allows for a deeper insight into non-linear dynamical phenomena. The numerical and analytical techniques presented do not require specific mathematical knowledge.

Dynamical Chaos

Dynamical Chaos PDF Author: Vadim Semenovich Anishchenko
Publisher: World Scientific
ISBN: 9789810221423
Category : Science
Languages : en
Pages : 410

Get Book Here

Book Description
In this book, bifurcational mechanisms of the development, structure and properties of chaotic attractors are investigated by numerical and physical experiments based on the methods of the modern theory of nonlinear oscillations. The typical bifurcations of regular and chaotic attractors which are due to parameter variations are analyzed.Regularities of the transition to chaos via the collapse of quasiperiodic oscillations with two and three frequencies are investigated in detail. The book deals with the problems of chaotic synchronization, interaction of attractors and the phenomenon of stochastic resonance. The problems of fluctuation influence on the bifurcations and properties of chaotic attractors are investigated more closely.All principal problems are investigated by the comparison of theoretical and numerical results and data from physical experiments.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos PDF Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Discrete Dynamical Systems, Bifurcations and Chaos in Economics

Discrete Dynamical Systems, Bifurcations and Chaos in Economics PDF Author: Wei-Bin Zhang
Publisher: Elsevier
ISBN: 0080462464
Category : Mathematics
Languages : en
Pages : 459

Get Book Here

Book Description
This book is a unique blend of difference equations theory and its exciting applications to economics. It deals with not only theory of linear (and linearized) difference equations, but also nonlinear dynamical systems which have been widely applied to economic analysis in recent years. It studies most important concepts and theorems in difference equations theory in a way that can be understood by anyone who has basic knowledge of calculus and linear algebra. It contains well-known applications and many recent developments in different fields of economics. The book also simulates many models to illustrate paths of economic dynamics. - A unique book concentrated on theory of discrete dynamical systems and its traditional as well as advanced applications to economics - Mathematical definitions and theorems are introduced in a systematic and easily accessible way - Examples are from almost all fields of economics; technically proceeding from basic to advanced topics - Lively illustrations with numerous figures - Numerous simulation to see paths of economic dynamics - Comprehensive treatment of the subject with a comprehensive and easily accessible approach

Chaos, Bifurcations And Fractals Around Us: A Brief Introduction

Chaos, Bifurcations And Fractals Around Us: A Brief Introduction PDF Author: Wanda Szemplinska-stupnicka
Publisher: World Scientific
ISBN: 981448363X
Category : Technology & Engineering
Languages : en
Pages : 117

Get Book Here

Book Description
During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study.Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study.

Dynamical Chaos

Dynamical Chaos PDF Author: Michael V. Berry
Publisher: Princeton University Press
ISBN: 1400860199
Category : Science
Languages : en
Pages : 209

Get Book Here

Book Description
The leading scientists who gave these papers under the sponsorship of the Royal Society in early 1987 provide reviews of facets of the subject of chaos ranging from the practical aspects of mirror machines for fusion power to the pure mathematics of geodesics on surfaces of negative curvature. The papers deal with systems in which chaotic conditions arise from initial value problems with unique solutions, as opposed to those where chaos is produced by the introduction of noise from an external source. Table of Contents Diagnosis of Dynamical Systems with Fluctuating Parameters D. Ruelle Nonlinear Dynamics, Chaos, and Complex Cardiac Arrhythmias L. Glass, A. L. Goldberger, M. Courtemanche, and A. Shrier Chaos and the Dynamics of Biological Populations R. M. May Fractal Bifurcation Sets, Renormalization Strange Sets, and Their Universal Invariants D. A. Rand From Chaos to Turbulence in Bnard Convection A. Libchaber Dynamics of Convection N. O. Weiss Chaos: A Mixed Metaphor for Turbulence E. A. Spiegel Arithmetical Theory of Anosov Diffeomorphisms F. Vivaldi Chaotic Behavior in the Solar System J. Wisdom Chaos in Hamiltonian Systems I. C. Percival Semi-Classical Quantization, Adiabatic Invariants, and Classical Chaos W. P. Reinhardt and I. Dana Particle Confinement and Adiabatic Invariance B. V. Chirikov Some Geometrical Models of Chaotic Dynamics C. Series The Bakerian Lecture: Quantum Chaology M. V. Berry Originally published in 1989. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Global Bifurcations and Chaos

Global Bifurcations and Chaos PDF Author: Stephen Wiggins
Publisher: Springer Science & Business Media
ISBN: 1461210429
Category : Mathematics
Languages : en
Pages : 505

Get Book Here

Book Description
Global Bifurcations and Chaos: Analytical Methods is unique in the literature of chaos in that it not only defines the concept of chaos in deterministic systems, but it describes the mechanisms which give rise to chaos (i.e., homoclinic and heteroclinic motions) and derives explicit techniques whereby these mechanisms can be detected in specific systems. These techniques can be viewed as generalizations of Melnikov's method to multi-degree of freedom systems subject to slowly varying parameters and quasiperiodic excitations. A unique feature of the book is that each theorem is illustrated with drawings that enable the reader to build visual pictures of global dynamcis of the systems being described. This approach leads to an enhanced intuitive understanding of the theory.

Chaos

Chaos PDF Author: Angelo Vulpiani
Publisher: World Scientific
ISBN: 9814277665
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields PDF Author: John Guckenheimer
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475

Get Book Here

Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.