Author: Lorenzo Fassina
Publisher: Frontiers Media SA
ISBN: 2832549586
Category : Technology & Engineering
Languages : en
Pages : 169
Book Description
This Research Topic is Volume II of the article collection, Cells, Biomaterials, and Biophysical Stimuli for Bone, Cartilage, and Muscle Regeneration Over the last few years, a variety of tissue engineering strategies have been developed to improve the regeneration of bone, cartilage, and skeletal muscle. Numerous studies have proven that physical factors (external mechanical forces, and biomaterials’ features), as well as biochemical factors, may induce cells to reprogram their functions and dynamically adapt to the cellular microenvironment conditions. The advances in understanding the role of biophysical cues in the stem cells microenvironment point out the importance of their application in biomedicine and biotechnology to drive and modulate cell behavior for therapeutic purposes. In this context, many efforts are dedicated to design different strategies to engineer the physical aspects of the natural cellular microenvironment. The development of these technologies may be useful for identifying and studying the physical factors and help to clarify their downstream mechanisms to control cell behavior. This Research Topic will promote an overview of recent advances and cutting-edge approaches based on primary cells, stem cells, extracellular vesicles (EVs), biomaterial scaffolds, bioreactors, biophysical stimuli (e.g., mechanical forces, electromagnetic waves), and biochemical cues. All research involving one or more of the aforementioned cells and methods is welcome to elucidate new basic-research findings (e.g., molecular insights, biochemical pathways toward regeneration) and possible new clinical strategies (e.g., bioreactors for cell factories). An interdisciplinary design (e.g., biology/biochemistry plus bioengineering) is very welcome.
Cells, Biomaterials, and Biophysical Stimuli for Bone, Cartilage, and Muscle Regeneration, volume II
Author: Lorenzo Fassina
Publisher: Frontiers Media SA
ISBN: 2832549586
Category : Technology & Engineering
Languages : en
Pages : 169
Book Description
This Research Topic is Volume II of the article collection, Cells, Biomaterials, and Biophysical Stimuli for Bone, Cartilage, and Muscle Regeneration Over the last few years, a variety of tissue engineering strategies have been developed to improve the regeneration of bone, cartilage, and skeletal muscle. Numerous studies have proven that physical factors (external mechanical forces, and biomaterials’ features), as well as biochemical factors, may induce cells to reprogram their functions and dynamically adapt to the cellular microenvironment conditions. The advances in understanding the role of biophysical cues in the stem cells microenvironment point out the importance of their application in biomedicine and biotechnology to drive and modulate cell behavior for therapeutic purposes. In this context, many efforts are dedicated to design different strategies to engineer the physical aspects of the natural cellular microenvironment. The development of these technologies may be useful for identifying and studying the physical factors and help to clarify their downstream mechanisms to control cell behavior. This Research Topic will promote an overview of recent advances and cutting-edge approaches based on primary cells, stem cells, extracellular vesicles (EVs), biomaterial scaffolds, bioreactors, biophysical stimuli (e.g., mechanical forces, electromagnetic waves), and biochemical cues. All research involving one or more of the aforementioned cells and methods is welcome to elucidate new basic-research findings (e.g., molecular insights, biochemical pathways toward regeneration) and possible new clinical strategies (e.g., bioreactors for cell factories). An interdisciplinary design (e.g., biology/biochemistry plus bioengineering) is very welcome.
Publisher: Frontiers Media SA
ISBN: 2832549586
Category : Technology & Engineering
Languages : en
Pages : 169
Book Description
This Research Topic is Volume II of the article collection, Cells, Biomaterials, and Biophysical Stimuli for Bone, Cartilage, and Muscle Regeneration Over the last few years, a variety of tissue engineering strategies have been developed to improve the regeneration of bone, cartilage, and skeletal muscle. Numerous studies have proven that physical factors (external mechanical forces, and biomaterials’ features), as well as biochemical factors, may induce cells to reprogram their functions and dynamically adapt to the cellular microenvironment conditions. The advances in understanding the role of biophysical cues in the stem cells microenvironment point out the importance of their application in biomedicine and biotechnology to drive and modulate cell behavior for therapeutic purposes. In this context, many efforts are dedicated to design different strategies to engineer the physical aspects of the natural cellular microenvironment. The development of these technologies may be useful for identifying and studying the physical factors and help to clarify their downstream mechanisms to control cell behavior. This Research Topic will promote an overview of recent advances and cutting-edge approaches based on primary cells, stem cells, extracellular vesicles (EVs), biomaterial scaffolds, bioreactors, biophysical stimuli (e.g., mechanical forces, electromagnetic waves), and biochemical cues. All research involving one or more of the aforementioned cells and methods is welcome to elucidate new basic-research findings (e.g., molecular insights, biochemical pathways toward regeneration) and possible new clinical strategies (e.g., bioreactors for cell factories). An interdisciplinary design (e.g., biology/biochemistry plus bioengineering) is very welcome.
Cells, biomaterials, and biophysical stimuli for bone, cartilage, and muscle regeneration
Author: Lorenzo Fassina
Publisher: Frontiers Media SA
ISBN: 2832522475
Category : Science
Languages : en
Pages : 137
Book Description
Publisher: Frontiers Media SA
ISBN: 2832522475
Category : Science
Languages : en
Pages : 137
Book Description
Smart Biomaterials
Author: Mitsuhiro Ebara
Publisher: Springer
ISBN: 4431544003
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
This book provides comprehensive coverage of smart biomaterials and their potential applications, a field that is developing at a very rapid pace. Because smart biomaterials are an emerging class of biomaterials that respond to small changes in external stimuli with large discontinuous changes in their physical properties, they have been designed to act as an “on–off” switch for, among others, bio separation, immunoanalysis, drug delivery technologies, gene therapy, diagnostics, bio sensors and artificial muscles. After an introduction to the topic and the history of smart biomaterials, the author gives the reader an in-depth look at the properties, mechanics, and characterization of smart biomaterials including hydrogels, particles, assemblies, surfaces, fibers and conjugates. Information on the wide range of applications for these materials follows, including drug delivery, tissue engineering, diagnostics, biosensors, bio separation and actuators. In addition, recent advances in shape memory biomaterials as active components of medical devices are also presented.
Publisher: Springer
ISBN: 4431544003
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
This book provides comprehensive coverage of smart biomaterials and their potential applications, a field that is developing at a very rapid pace. Because smart biomaterials are an emerging class of biomaterials that respond to small changes in external stimuli with large discontinuous changes in their physical properties, they have been designed to act as an “on–off” switch for, among others, bio separation, immunoanalysis, drug delivery technologies, gene therapy, diagnostics, bio sensors and artificial muscles. After an introduction to the topic and the history of smart biomaterials, the author gives the reader an in-depth look at the properties, mechanics, and characterization of smart biomaterials including hydrogels, particles, assemblies, surfaces, fibers and conjugates. Information on the wide range of applications for these materials follows, including drug delivery, tissue engineering, diagnostics, biosensors, bio separation and actuators. In addition, recent advances in shape memory biomaterials as active components of medical devices are also presented.
In Situ Tissue Regeneration
Author: Sang Jin Lee
Publisher: Academic Press
ISBN: 012802500X
Category : Medical
Languages : en
Pages : 460
Book Description
In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design explores the body's ability to mobilize endogenous stem cells to the site of injury and details the latest strategies developed for inducing and supporting the body's own regenerating capacity. From the perspective of regenerative medicine and tissue engineering, this book describes the mechanism of host cell recruitment, cell sourcing, cellular and molecular roles in cell differentiation, navigational cues and niche signals, and a tissue-specific smart biomaterial system that can be applied to a wide range of therapies. The work is divided into four sections to provide a thorough overview and helpful hints for future discoveries: endogenous cell sources; biochemical and physical cues; smart biomaterial development; and applications. - Explores the body's ability to mobilize endogenous stem cells to the site of injury - Details the latest strategies developed for inducing and supporting the body's own regenerating capacity - Presents smart biomaterials in cell-based tissue engineering applications—from the cell level to applications—in the first unified volume - Features chapter authors and editors who are authorities in this emerging field - Prioritizes a discussion of the future direction of smart biomaterials for in situ tissue regeneration, which will affect an emerging and lucrative industry
Publisher: Academic Press
ISBN: 012802500X
Category : Medical
Languages : en
Pages : 460
Book Description
In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design explores the body's ability to mobilize endogenous stem cells to the site of injury and details the latest strategies developed for inducing and supporting the body's own regenerating capacity. From the perspective of regenerative medicine and tissue engineering, this book describes the mechanism of host cell recruitment, cell sourcing, cellular and molecular roles in cell differentiation, navigational cues and niche signals, and a tissue-specific smart biomaterial system that can be applied to a wide range of therapies. The work is divided into four sections to provide a thorough overview and helpful hints for future discoveries: endogenous cell sources; biochemical and physical cues; smart biomaterial development; and applications. - Explores the body's ability to mobilize endogenous stem cells to the site of injury - Details the latest strategies developed for inducing and supporting the body's own regenerating capacity - Presents smart biomaterials in cell-based tissue engineering applications—from the cell level to applications—in the first unified volume - Features chapter authors and editors who are authorities in this emerging field - Prioritizes a discussion of the future direction of smart biomaterials for in situ tissue regeneration, which will affect an emerging and lucrative industry
Developmental Biology and Musculoskeletal Tissue Engineering
Author: Martin J. Stoddart
Publisher: Academic Press
ISBN: 0128115386
Category : Medical
Languages : en
Pages : 272
Book Description
Developmental Biology and Musculoskeletal Tissue Engineering: Principles and Applications focuses on the regeneration of orthopedic tissue, drawing upon expertise from developmental biologists specializing in orthopedic tissues and tissue engineers who have used and applied developmental biology approaches. Musculoskeletal tissues have an inherently poor repair capacity, and thus biologically-based treatments that can recapitulate the native tissue properties are desirable. Cell- and tissue-based therapies are gaining ground, but basic principles still need to be addressed to ensure successful development of clinical treatments. Written as a source of information for practitioners and those with a nascent interest, it provides background information and state-of-the-art solutions and technologies. Recent developments in orthopedic tissue engineering have sought to recapitulate developmental processes for tissue repair and regeneration, and such developmental-biology based approaches are also likely to be extremely amenable for use with more primitive stem cells. - Brings the fields of tissue engineering and developmental biology together to explore the potential for regenerative medicine-based research to contribute to enhanced clinical outcomes - Initial chapters provide an outline of the development of the musculoskeletal system in general, and later chapters focus on specific tissues - Addresses the effect of mechanical forces on the musculoskeletal system during development and the relevance of these processes to tissue engineering - Discusses the role of genes in the development of musculoskeletal tissues and their potential use in tissue engineering - Describes how developmental biology is being used to influence and guide tissue engineering approaches for cartilage, bone, disc, and tendon repair
Publisher: Academic Press
ISBN: 0128115386
Category : Medical
Languages : en
Pages : 272
Book Description
Developmental Biology and Musculoskeletal Tissue Engineering: Principles and Applications focuses on the regeneration of orthopedic tissue, drawing upon expertise from developmental biologists specializing in orthopedic tissues and tissue engineers who have used and applied developmental biology approaches. Musculoskeletal tissues have an inherently poor repair capacity, and thus biologically-based treatments that can recapitulate the native tissue properties are desirable. Cell- and tissue-based therapies are gaining ground, but basic principles still need to be addressed to ensure successful development of clinical treatments. Written as a source of information for practitioners and those with a nascent interest, it provides background information and state-of-the-art solutions and technologies. Recent developments in orthopedic tissue engineering have sought to recapitulate developmental processes for tissue repair and regeneration, and such developmental-biology based approaches are also likely to be extremely amenable for use with more primitive stem cells. - Brings the fields of tissue engineering and developmental biology together to explore the potential for regenerative medicine-based research to contribute to enhanced clinical outcomes - Initial chapters provide an outline of the development of the musculoskeletal system in general, and later chapters focus on specific tissues - Addresses the effect of mechanical forces on the musculoskeletal system during development and the relevance of these processes to tissue engineering - Discusses the role of genes in the development of musculoskeletal tissues and their potential use in tissue engineering - Describes how developmental biology is being used to influence and guide tissue engineering approaches for cartilage, bone, disc, and tendon repair
Multiscale Cell-Biomaterials Interplay in Musculoskeletal Tissue Engineering and Regenerative Medicine
Author: J. Miguel Oliveira
Publisher: Elsevier
ISBN: 0323972624
Category : Science
Languages : en
Pages : 556
Book Description
Multiscale Cell-Biomaterials Interplay in Musculoskeletal Tissue Engineering and Regenerative Medicine addresses the key concepts involved in the interactions between cells and biomaterials in the musculoskeletal tissue engineering and regenerative medicine field. The updated developments and challenges of the mechanisms/mechanobiology and structure-function properties of those interactions, as well as emerging technologies underlying tissue-engineered scaffolding, are carefully discussed. Lastly, cell engineering and cell-based therapies, growth factors/drugs properties, vascularization, immunomodulation are also outlined. Given the large number of musculoskeletal disorders and related injuries that can affect muscles, bones and joints and lead to severe complications of the neuromuscular system, it is imperative to develop new treatment strategies to delay or repair associated diseases and to promote optimal long-term health. - Presents the fundamentals of the complex interplay of cells with biomaterials in musculoskeletal tissue engineering - Includes coverage of stem cells and cell-based therapies, in vitro and in vivo models, nanotechnology, bioprinting, computational modeling, regulatory and clinical translation, and much more - Written by global leaders in the field
Publisher: Elsevier
ISBN: 0323972624
Category : Science
Languages : en
Pages : 556
Book Description
Multiscale Cell-Biomaterials Interplay in Musculoskeletal Tissue Engineering and Regenerative Medicine addresses the key concepts involved in the interactions between cells and biomaterials in the musculoskeletal tissue engineering and regenerative medicine field. The updated developments and challenges of the mechanisms/mechanobiology and structure-function properties of those interactions, as well as emerging technologies underlying tissue-engineered scaffolding, are carefully discussed. Lastly, cell engineering and cell-based therapies, growth factors/drugs properties, vascularization, immunomodulation are also outlined. Given the large number of musculoskeletal disorders and related injuries that can affect muscles, bones and joints and lead to severe complications of the neuromuscular system, it is imperative to develop new treatment strategies to delay or repair associated diseases and to promote optimal long-term health. - Presents the fundamentals of the complex interplay of cells with biomaterials in musculoskeletal tissue engineering - Includes coverage of stem cells and cell-based therapies, in vitro and in vivo models, nanotechnology, bioprinting, computational modeling, regulatory and clinical translation, and much more - Written by global leaders in the field
Comprehensive Biomaterials II
Author: Kevin Healy
Publisher: Elsevier
ISBN: 0081006926
Category : Technology & Engineering
Languages : en
Pages : 4865
Book Description
Comprehensive Biomaterials II, Second Edition, Seven Volume Set brings together the myriad facets of biomaterials into one expertly-written series of edited volumes. Articles address the current status of nearly all biomaterials in the field, their strengths and weaknesses, their future prospects, appropriate analytical methods and testing, device applications and performance, emerging candidate materials as competitors and disruptive technologies, research and development, regulatory management, commercial aspects, and applications, including medical applications. Detailed coverage is given to both new and emerging areas and the latest research in more traditional areas of the field. Particular attention is given to those areas in which major recent developments have taken place. This new edition, with 75% new or updated articles, will provide biomedical scientists in industry, government, academia, and research organizations with an accurate perspective on the field in a manner that is both accessible and thorough. Reviews the current status of nearly all biomaterials in the field by analyzing their strengths and weaknesses, performance, and future prospects Covers all significant emerging technologies in areas such as 3D printing of tissues, organs and scaffolds, cell encapsulation; multimodal delivery, cancer/vaccine - biomaterial applications, neural interface understanding, materials used for in situ imaging, and infection prevention and treatment Effectively describes the many modern aspects of biomaterials from basic science, to clinical applications
Publisher: Elsevier
ISBN: 0081006926
Category : Technology & Engineering
Languages : en
Pages : 4865
Book Description
Comprehensive Biomaterials II, Second Edition, Seven Volume Set brings together the myriad facets of biomaterials into one expertly-written series of edited volumes. Articles address the current status of nearly all biomaterials in the field, their strengths and weaknesses, their future prospects, appropriate analytical methods and testing, device applications and performance, emerging candidate materials as competitors and disruptive technologies, research and development, regulatory management, commercial aspects, and applications, including medical applications. Detailed coverage is given to both new and emerging areas and the latest research in more traditional areas of the field. Particular attention is given to those areas in which major recent developments have taken place. This new edition, with 75% new or updated articles, will provide biomedical scientists in industry, government, academia, and research organizations with an accurate perspective on the field in a manner that is both accessible and thorough. Reviews the current status of nearly all biomaterials in the field by analyzing their strengths and weaknesses, performance, and future prospects Covers all significant emerging technologies in areas such as 3D printing of tissues, organs and scaffolds, cell encapsulation; multimodal delivery, cancer/vaccine - biomaterial applications, neural interface understanding, materials used for in situ imaging, and infection prevention and treatment Effectively describes the many modern aspects of biomaterials from basic science, to clinical applications
Principles of Regenerative Medicine
Author: Anthony Atala
Publisher: Academic Press
ISBN: 0123814235
Category : Science
Languages : en
Pages : 1203
Book Description
Virtually any disease that results from malfunctioning, damaged, or failing tissues may be potentially cured through regenerative medicine therapies, by either regenerating the damaged tissues in vivo, or by growing the tissues and organs in vitro and implanting them into the patient. Principles of Regenerative Medicine discusses the latest advances in technology and medicine for replacing tissues and organs damaged by disease and of developing therapies for previously untreatable conditions, such as diabetes, heart disease, liver disease, and renal failure. - Key for all researchers and instituions in Stem Cell Biology, Bioengineering, and Developmental Biology - The first of its kind to offer an advanced understanding of the latest technologies in regenerative medicine - New discoveries from leading researchers on restoration of diseased tissues and organs
Publisher: Academic Press
ISBN: 0123814235
Category : Science
Languages : en
Pages : 1203
Book Description
Virtually any disease that results from malfunctioning, damaged, or failing tissues may be potentially cured through regenerative medicine therapies, by either regenerating the damaged tissues in vivo, or by growing the tissues and organs in vitro and implanting them into the patient. Principles of Regenerative Medicine discusses the latest advances in technology and medicine for replacing tissues and organs damaged by disease and of developing therapies for previously untreatable conditions, such as diabetes, heart disease, liver disease, and renal failure. - Key for all researchers and instituions in Stem Cell Biology, Bioengineering, and Developmental Biology - The first of its kind to offer an advanced understanding of the latest technologies in regenerative medicine - New discoveries from leading researchers on restoration of diseased tissues and organs
Stem Cell Regulators
Author:
Publisher: Academic Press
ISBN: 0123860164
Category : Science
Languages : en
Pages : 523
Book Description
First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. The Editorial Board now reflects expertise in the field of hormone action, vitamin action, X-ray crystal structure, physiology and enzyme mechanisms. Under the capable and qualified editorial leadership of Dr. Gerald Litwack, Vitamins and Hormones continues to publish cutting-edge reviews of interest to endocrinologists, biochemists, nutritionists, pharmacologists, cell biologists and molecular biologists. Others interested in the structure and function of biologically active molecules like hormones and vitamins will, as always, turn to this series for comprehensive reviews by leading contributors to this and related disciplines. This volume focuses on stem cell regulators. - Longest running series published by Academic Press - Contributions by leading international authorities
Publisher: Academic Press
ISBN: 0123860164
Category : Science
Languages : en
Pages : 523
Book Description
First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. The Editorial Board now reflects expertise in the field of hormone action, vitamin action, X-ray crystal structure, physiology and enzyme mechanisms. Under the capable and qualified editorial leadership of Dr. Gerald Litwack, Vitamins and Hormones continues to publish cutting-edge reviews of interest to endocrinologists, biochemists, nutritionists, pharmacologists, cell biologists and molecular biologists. Others interested in the structure and function of biologically active molecules like hormones and vitamins will, as always, turn to this series for comprehensive reviews by leading contributors to this and related disciplines. This volume focuses on stem cell regulators. - Longest running series published by Academic Press - Contributions by leading international authorities
Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles
Author: Venkatram Prasad Shastri
Publisher: Springer Science & Business Media
ISBN: 9048187885
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
This book summarizes the NATO Advanced Research Workshop (ARW) on “Nanoengineered Systems for Regenerative Medicine” that was organized under the auspices of the NATO Security through Science Program. I would like to thank NATO for supporting this workshop via a grant to the co-directors. The objective of ARW was to explore the various facets of regenerative me- cine and to highlight role of the “the nano-length scale” and “nano-scale systems” in defining and controlling cell and tissue environments. The development of novel tissue regenerative strategies require the integration of new insights emerging from studies of cell-matrix interactions, cellular signalling processes, developmental and systems biology, into biomaterials design, via a systems approach. The chapters in the book, written by the leading experts in their respective disciplines, cover a wide spectrum of topics ranging from stem cell biology, developmental biology, ce- matrix interactions, and matrix biology to surface science, materials processing and drug delivery. We hope the contents of the book will provoke the readership into developing regenerative medicine paradigms that combine these facets into cli- cally translatable solutions. This NATO meeting would not have been successful without the timely help of Dr. Ulrike Shastri, Sanjeet Rangarajan and Ms. Sabine Benner, who assisted in the organization and implementation of various elements of this meeting. Thanks are also due Dr. Fausto Pedrazzini and Ms. Alison Trapp at NATO HQ (Brussels, Belgium). The commitment and persistence of Ms.
Publisher: Springer Science & Business Media
ISBN: 9048187885
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
This book summarizes the NATO Advanced Research Workshop (ARW) on “Nanoengineered Systems for Regenerative Medicine” that was organized under the auspices of the NATO Security through Science Program. I would like to thank NATO for supporting this workshop via a grant to the co-directors. The objective of ARW was to explore the various facets of regenerative me- cine and to highlight role of the “the nano-length scale” and “nano-scale systems” in defining and controlling cell and tissue environments. The development of novel tissue regenerative strategies require the integration of new insights emerging from studies of cell-matrix interactions, cellular signalling processes, developmental and systems biology, into biomaterials design, via a systems approach. The chapters in the book, written by the leading experts in their respective disciplines, cover a wide spectrum of topics ranging from stem cell biology, developmental biology, ce- matrix interactions, and matrix biology to surface science, materials processing and drug delivery. We hope the contents of the book will provoke the readership into developing regenerative medicine paradigms that combine these facets into cli- cally translatable solutions. This NATO meeting would not have been successful without the timely help of Dr. Ulrike Shastri, Sanjeet Rangarajan and Ms. Sabine Benner, who assisted in the organization and implementation of various elements of this meeting. Thanks are also due Dr. Fausto Pedrazzini and Ms. Alison Trapp at NATO HQ (Brussels, Belgium). The commitment and persistence of Ms.