Author: Wei-Shou Hu
Publisher: CRC Press
ISBN: 0429531893
Category : Science
Languages : en
Pages : 567
Book Description
This book is the culmination of three decades of accumulated experience in teaching biotechnology professionals. It distills the fundamental principles and essential knowledge of cell culture processes from across many different disciplines and presents them in a series of easy-to-follow, comprehensive chapters. Practicality, including technological advances and best practices, is emphasized. This second edition consists of major updates to all relevant topics contained within this work. The previous edition has been successfully used in training courses on cell culture bioprocessing over the past seven years. The format of the book is well-suited to fast-paced learning, such as is found in the intensive short course, since the key take-home messages are prominently highlighted in panels. The book is also well-suited to act as a reference guide for experienced industrial practitioners of mammalian cell cultivation for the production of biologics.
Cell Culture Bioprocess Engineering, Second Edition
Author: Wei-Shou Hu
Publisher: CRC Press
ISBN: 0429531893
Category : Science
Languages : en
Pages : 567
Book Description
This book is the culmination of three decades of accumulated experience in teaching biotechnology professionals. It distills the fundamental principles and essential knowledge of cell culture processes from across many different disciplines and presents them in a series of easy-to-follow, comprehensive chapters. Practicality, including technological advances and best practices, is emphasized. This second edition consists of major updates to all relevant topics contained within this work. The previous edition has been successfully used in training courses on cell culture bioprocessing over the past seven years. The format of the book is well-suited to fast-paced learning, such as is found in the intensive short course, since the key take-home messages are prominently highlighted in panels. The book is also well-suited to act as a reference guide for experienced industrial practitioners of mammalian cell cultivation for the production of biologics.
Publisher: CRC Press
ISBN: 0429531893
Category : Science
Languages : en
Pages : 567
Book Description
This book is the culmination of three decades of accumulated experience in teaching biotechnology professionals. It distills the fundamental principles and essential knowledge of cell culture processes from across many different disciplines and presents them in a series of easy-to-follow, comprehensive chapters. Practicality, including technological advances and best practices, is emphasized. This second edition consists of major updates to all relevant topics contained within this work. The previous edition has been successfully used in training courses on cell culture bioprocessing over the past seven years. The format of the book is well-suited to fast-paced learning, such as is found in the intensive short course, since the key take-home messages are prominently highlighted in panels. The book is also well-suited to act as a reference guide for experienced industrial practitioners of mammalian cell cultivation for the production of biologics.
Cell Culture Bioprocess Engineering, Second Edition
Author: Wei-Shou Hu
Publisher: CRC Press
ISBN: 1498762867
Category : Science
Languages : en
Pages : 466
Book Description
This book is the culmination of three decades of accumulated experience in teaching biotechnology professionals. It distills the fundamental principles and essential knowledge of cell culture processes from across many different disciplines and presents them in a series of easy-to-follow, comprehensive chapters. Practicality, including technological advances and best practices, is emphasized. This second edition consists of major updates to all relevant topics contained within this work. The previous edition has been successfully used in training courses on cell culture bioprocessing over the past seven years. The format of the book is well-suited to fast-paced learning, such as is found in the intensive short course, since the key take-home messages are prominently highlighted in panels. The book is also well-suited to act as a reference guide for experienced industrial practitioners of mammalian cell cultivation for the production of biologics.
Publisher: CRC Press
ISBN: 1498762867
Category : Science
Languages : en
Pages : 466
Book Description
This book is the culmination of three decades of accumulated experience in teaching biotechnology professionals. It distills the fundamental principles and essential knowledge of cell culture processes from across many different disciplines and presents them in a series of easy-to-follow, comprehensive chapters. Practicality, including technological advances and best practices, is emphasized. This second edition consists of major updates to all relevant topics contained within this work. The previous edition has been successfully used in training courses on cell culture bioprocessing over the past seven years. The format of the book is well-suited to fast-paced learning, such as is found in the intensive short course, since the key take-home messages are prominently highlighted in panels. The book is also well-suited to act as a reference guide for experienced industrial practitioners of mammalian cell cultivation for the production of biologics.
Bioprocess Engineering
Author: Shijie Liu
Publisher: Newnes
ISBN: 0444595252
Category : Science
Languages : en
Pages : 1002
Book Description
Bioprocess Engineering involves the design and development of equipment and processes for the manufacturing of products such as food, feed, pharmaceuticals, nutraceuticals, chemicals, and polymers and paper from biological materials. It also deals with studying various biotechnological processes. "Bioprocess Kinetics and Systems Engineering" first of its kind contains systematic and comprehensive content on bioprocess kinetics, bioprocess systems, sustainability and reaction engineering. Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics-including batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering, and bioprocess systems engineering- introducing key principles that enable bioprocess engineers to engage in the analysis, optimization, design and consistent control over biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme of this book, while more advanced techniques and applications are covered with some depth. Many theoretical derivations and simplifications are used to demonstrate how empirical kinetic models are applicable to complicated bioprocess systems. Contains extensive illustrative drawings which make the understanding of the subject easy Contains worked examples of the various process parameters, their significance and their specific practical use Provides the theory of bioprocess kinetics from simple concepts to complex metabolic pathways Incorporates sustainability concepts into the various bioprocesses
Publisher: Newnes
ISBN: 0444595252
Category : Science
Languages : en
Pages : 1002
Book Description
Bioprocess Engineering involves the design and development of equipment and processes for the manufacturing of products such as food, feed, pharmaceuticals, nutraceuticals, chemicals, and polymers and paper from biological materials. It also deals with studying various biotechnological processes. "Bioprocess Kinetics and Systems Engineering" first of its kind contains systematic and comprehensive content on bioprocess kinetics, bioprocess systems, sustainability and reaction engineering. Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics-including batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering, and bioprocess systems engineering- introducing key principles that enable bioprocess engineers to engage in the analysis, optimization, design and consistent control over biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme of this book, while more advanced techniques and applications are covered with some depth. Many theoretical derivations and simplifications are used to demonstrate how empirical kinetic models are applicable to complicated bioprocess systems. Contains extensive illustrative drawings which make the understanding of the subject easy Contains worked examples of the various process parameters, their significance and their specific practical use Provides the theory of bioprocess kinetics from simple concepts to complex metabolic pathways Incorporates sustainability concepts into the various bioprocesses
Bioprocess Engineering Principles
Author: Pauline M. Doran
Publisher: Elsevier
ISBN: 0080528120
Category : Science
Languages : en
Pages : 455
Book Description
The emergence and refinement of techniques in molecular biology has changed our perceptions of medicine, agriculture and environmental management. Scientific breakthroughs in gene expression, protein engineering and cell fusion are being translated by a strengthening biotechnology industry into revolutionary new products and services. Many a student has been enticed by the promise of biotechnology and the excitement of being near the cutting edge of scientific advancement. However, graduates trained in molecular biology and cell manipulation soon realise that these techniques are only part of the picture. Reaping the full benefits of biotechnology requires manufacturing capability involving the large-scale processing of biological material. Increasingly, biotechnologists are being employed by companies to work in co-operation with chemical engineers to achieve pragmatic commercial goals. For many years aspects of biochemistry and molecular genetics have been included in chemical engineering curricula, yet there has been little attempt until recently to teach aspects of engineering applicable to process design to biotechnologists.This textbook is the first to present the principles of bioprocess engineering in a way that is accessible to biological scientists. Other texts on bioprocess engineering currently available assume that the reader already has engineering training. On the other hand, chemical engineering textbooks do not consider examples from bioprocessing, and are written almost exclusively with the petroleum and chemical industries in mind. This publication explains process analysis from an engineering point of view, but refers exclusively to the treatment of biological systems. Over 170 problems and worked examples encompass a wide range of applications, including recombinant cells, plant and animal cell cultures, immobilised catalysts as well as traditional fermentation systems.* * First book to present the principles of bioprocess engineering in a way that is accessible to biological scientists* Explains process analysis from an engineering point of view, but uses worked examples relating to biological systems* Comprehensive, single-authored* 170 problems and worked examples encompass a wide range of applications, involving recombinant plant and animal cell cultures, immobilized catalysts, and traditional fermentation systems* 13 chapters, organized according to engineering sub-disciplines, are groupled in four sections - Introduction, Material and Energy Balances, Physical Processes, and Reactions and Reactors* Each chapter includes a set of problems and exercises for the student, key references, and a list of suggestions for further reading* Includes useful appendices, detailing conversion factors, physical and chemical property data, steam tables, mathematical rules, and a list of symbols used* Suitable for course adoption - follows closely curricula used on most bioprocessing and process biotechnology courses at senior undergraduate and graduate levels.
Publisher: Elsevier
ISBN: 0080528120
Category : Science
Languages : en
Pages : 455
Book Description
The emergence and refinement of techniques in molecular biology has changed our perceptions of medicine, agriculture and environmental management. Scientific breakthroughs in gene expression, protein engineering and cell fusion are being translated by a strengthening biotechnology industry into revolutionary new products and services. Many a student has been enticed by the promise of biotechnology and the excitement of being near the cutting edge of scientific advancement. However, graduates trained in molecular biology and cell manipulation soon realise that these techniques are only part of the picture. Reaping the full benefits of biotechnology requires manufacturing capability involving the large-scale processing of biological material. Increasingly, biotechnologists are being employed by companies to work in co-operation with chemical engineers to achieve pragmatic commercial goals. For many years aspects of biochemistry and molecular genetics have been included in chemical engineering curricula, yet there has been little attempt until recently to teach aspects of engineering applicable to process design to biotechnologists.This textbook is the first to present the principles of bioprocess engineering in a way that is accessible to biological scientists. Other texts on bioprocess engineering currently available assume that the reader already has engineering training. On the other hand, chemical engineering textbooks do not consider examples from bioprocessing, and are written almost exclusively with the petroleum and chemical industries in mind. This publication explains process analysis from an engineering point of view, but refers exclusively to the treatment of biological systems. Over 170 problems and worked examples encompass a wide range of applications, including recombinant cells, plant and animal cell cultures, immobilised catalysts as well as traditional fermentation systems.* * First book to present the principles of bioprocess engineering in a way that is accessible to biological scientists* Explains process analysis from an engineering point of view, but uses worked examples relating to biological systems* Comprehensive, single-authored* 170 problems and worked examples encompass a wide range of applications, involving recombinant plant and animal cell cultures, immobilized catalysts, and traditional fermentation systems* 13 chapters, organized according to engineering sub-disciplines, are groupled in four sections - Introduction, Material and Energy Balances, Physical Processes, and Reactions and Reactors* Each chapter includes a set of problems and exercises for the student, key references, and a list of suggestions for further reading* Includes useful appendices, detailing conversion factors, physical and chemical property data, steam tables, mathematical rules, and a list of symbols used* Suitable for course adoption - follows closely curricula used on most bioprocessing and process biotechnology courses at senior undergraduate and graduate levels.
Cell Culture Engineering
Author: Wei-Shu Hu
Publisher: Springer
ISBN: 3540340076
Category : Science
Languages : en
Pages : 179
Book Description
Since the introduction of recombinant human growth hormone and insulin a quarter century ago, protein therapeutics has greatly broadened the ho- zon of health care. Many patients suffering with life-threatening diseases or chronic dysfunctions, which were medically untreatable not long ago, can attest to the wonder these drugs have achieved. Although the ?rst generation of p- tein therapeutics was produced in recombinant Escherichia coli, most recent products use mammalian cells as production hosts. Not long after the ?rst p- duction of recombinant proteins in E. coli, it was realized that the complex tasks of most post-translational modi?cations on proteins could only be ef?ciently carried out in mammalian cells. In the 1990s, we witnessed a rapid expansion of mammalian-cell-derived protein therapeutics, chie?y antibodies. In fact, it has been nearly a decade since the market value of mammalian-cell-derived protein therapeutics surpassed that of those produced from E. coli. A common characteristic of recent antibody products is the relatively large dose required for effective therapy, demanding larger quantities for the treatment of a given disease. This, coupled with the broadening repertoire of protein drugs, has rapidly expanded the quantity needed for clinical applications. The increasing demand for protein therapeutics has not been met exclusively by construction of new manufacturing plants and increasing total volume capacity. More - portantly the productivity of cell culture processes has been driven upward by an order of magnitude in the past decade.
Publisher: Springer
ISBN: 3540340076
Category : Science
Languages : en
Pages : 179
Book Description
Since the introduction of recombinant human growth hormone and insulin a quarter century ago, protein therapeutics has greatly broadened the ho- zon of health care. Many patients suffering with life-threatening diseases or chronic dysfunctions, which were medically untreatable not long ago, can attest to the wonder these drugs have achieved. Although the ?rst generation of p- tein therapeutics was produced in recombinant Escherichia coli, most recent products use mammalian cells as production hosts. Not long after the ?rst p- duction of recombinant proteins in E. coli, it was realized that the complex tasks of most post-translational modi?cations on proteins could only be ef?ciently carried out in mammalian cells. In the 1990s, we witnessed a rapid expansion of mammalian-cell-derived protein therapeutics, chie?y antibodies. In fact, it has been nearly a decade since the market value of mammalian-cell-derived protein therapeutics surpassed that of those produced from E. coli. A common characteristic of recent antibody products is the relatively large dose required for effective therapy, demanding larger quantities for the treatment of a given disease. This, coupled with the broadening repertoire of protein drugs, has rapidly expanded the quantity needed for clinical applications. The increasing demand for protein therapeutics has not been met exclusively by construction of new manufacturing plants and increasing total volume capacity. More - portantly the productivity of cell culture processes has been driven upward by an order of magnitude in the past decade.
Biochemical Engineering and Biotechnology
Author: Ghasem Najafpour
Publisher: Elsevier
ISBN: 0444633774
Category : Technology & Engineering
Languages : en
Pages : 669
Book Description
Biochemical Engineering and Biotechnology, 2nd Edition, outlines the principles of biochemical processes and explains their use in the manufacturing of every day products. The author uses a diirect approach that should be very useful for students in following the concepts and practical applications. This book is unique in having many solved problems, case studies, examples and demonstrations of detailed experiments, with simple design equations and required calculations. - Covers major concepts of biochemical engineering and biotechnology, including applications in bioprocesses, fermentation technologies, enzymatic processes, and membrane separations, amongst others - Accessible to chemical engineering students who need to both learn, and apply, biological knowledge in engineering principals - Includes solved problems, examples, and demonstrations of detailed experiments with simple design equations and all required calculations - Offers many graphs that present actual experimental data, figures, and tables, along with explanations
Publisher: Elsevier
ISBN: 0444633774
Category : Technology & Engineering
Languages : en
Pages : 669
Book Description
Biochemical Engineering and Biotechnology, 2nd Edition, outlines the principles of biochemical processes and explains their use in the manufacturing of every day products. The author uses a diirect approach that should be very useful for students in following the concepts and practical applications. This book is unique in having many solved problems, case studies, examples and demonstrations of detailed experiments, with simple design equations and required calculations. - Covers major concepts of biochemical engineering and biotechnology, including applications in bioprocesses, fermentation technologies, enzymatic processes, and membrane separations, amongst others - Accessible to chemical engineering students who need to both learn, and apply, biological knowledge in engineering principals - Includes solved problems, examples, and demonstrations of detailed experiments with simple design equations and all required calculations - Offers many graphs that present actual experimental data, figures, and tables, along with explanations
Cell Culture Engineering
Author: Gyun Min Lee
Publisher: John Wiley & Sons
ISBN: 3527343342
Category : Science
Languages : en
Pages : 436
Book Description
Offers a comprehensive overview of cell culture engineering, providing insight into cell engineering, systems biology approaches and processing technology In Cell Culture Engineering: Recombinant Protein Production, editors Gyun Min Lee and Helene Faustrup Kildegaard assemble top class authors to present expert coverage of topics such as: cell line development for therapeutic protein production; development of a transient gene expression upstream platform; and CHO synthetic biology. They provide readers with everything they need to know about enhancing product and bioprocess attributes using genome-scale models of CHO metabolism; omics data and mammalian systems biotechnology; perfusion culture; and much more. This all-new, up-to-date reference covers all of the important aspects of cell culture engineering, including cell engineering, system biology approaches, and processing technology. It describes the challenges in cell line development and cell engineering, e.g. via gene editing tools like CRISPR/Cas9 and with the aim to engineer glycosylation patterns. Furthermore, it gives an overview about synthetic biology approaches applied to cell culture engineering and elaborates the use of CHO cells as common cell line for protein production. In addition, the book discusses the most important aspects of production processes, including cell culture media, batch, fed-batch, and perfusion processes as well as process analytical technology, quality by design, and scale down models. -Covers key elements of cell culture engineering applied to the production of recombinant proteins for therapeutic use -Focuses on mammalian and animal cells to help highlight synthetic and systems biology approaches to cell culture engineering, exemplified by the widely used CHO cell line -Part of the renowned "Advanced Biotechnology" book series Cell Culture Engineering: Recombinant Protein Production will appeal to biotechnologists, bioengineers, life scientists, chemical engineers, and PhD students in the life sciences.
Publisher: John Wiley & Sons
ISBN: 3527343342
Category : Science
Languages : en
Pages : 436
Book Description
Offers a comprehensive overview of cell culture engineering, providing insight into cell engineering, systems biology approaches and processing technology In Cell Culture Engineering: Recombinant Protein Production, editors Gyun Min Lee and Helene Faustrup Kildegaard assemble top class authors to present expert coverage of topics such as: cell line development for therapeutic protein production; development of a transient gene expression upstream platform; and CHO synthetic biology. They provide readers with everything they need to know about enhancing product and bioprocess attributes using genome-scale models of CHO metabolism; omics data and mammalian systems biotechnology; perfusion culture; and much more. This all-new, up-to-date reference covers all of the important aspects of cell culture engineering, including cell engineering, system biology approaches, and processing technology. It describes the challenges in cell line development and cell engineering, e.g. via gene editing tools like CRISPR/Cas9 and with the aim to engineer glycosylation patterns. Furthermore, it gives an overview about synthetic biology approaches applied to cell culture engineering and elaborates the use of CHO cells as common cell line for protein production. In addition, the book discusses the most important aspects of production processes, including cell culture media, batch, fed-batch, and perfusion processes as well as process analytical technology, quality by design, and scale down models. -Covers key elements of cell culture engineering applied to the production of recombinant proteins for therapeutic use -Focuses on mammalian and animal cells to help highlight synthetic and systems biology approaches to cell culture engineering, exemplified by the widely used CHO cell line -Part of the renowned "Advanced Biotechnology" book series Cell Culture Engineering: Recombinant Protein Production will appeal to biotechnologists, bioengineers, life scientists, chemical engineers, and PhD students in the life sciences.
Bioreactors
Author: Goutam Saha
Publisher: CRC Press
ISBN: 1498736017
Category : Medical
Languages : en
Pages : 148
Book Description
Bioreactors: Animal Cell Culture Control for Bioprocess Engineering presents the design, fabrication, and control of a new type of bioreactor meant especially for animal cell line culture. The new bioreactor, called the "see-saw bioreactor," is ideal for the growth of cells with a sensitive membrane. The see-saw bioreactor derives its name from its principle of operation in which liquid columns in either limb of the reactor alternately go up and down. The working volume of the reactor is small, to within 15 L. However, it can easily be scaled up for large production in volume of cell mass in the drug and pharmaceutical industries. The authors describe the principle of operation of the see-saw bioreactor and how to automatically control the bioprocess. They discuss different control strategies as well as the thorough experimental research they conducted on this prototype bioreactor in which they applied a time delay control for yield maximization. To give you a complete understanding of the design and development of the see-saw bioreactor, the authors cover the mathematical model they use to describe the kinetics of fermentation, the genetic algorithms used for deriving the optimal time trajectories of the bioprocess variables, and the corresponding control inputs for maximizing the product yield. One chapter is devoted to the application of time delay control. Following a description of the bioreactor’s working setup in the laboratory, the authors sum up their investigation and define the future scope of work in terms of design, control, and software sensors.
Publisher: CRC Press
ISBN: 1498736017
Category : Medical
Languages : en
Pages : 148
Book Description
Bioreactors: Animal Cell Culture Control for Bioprocess Engineering presents the design, fabrication, and control of a new type of bioreactor meant especially for animal cell line culture. The new bioreactor, called the "see-saw bioreactor," is ideal for the growth of cells with a sensitive membrane. The see-saw bioreactor derives its name from its principle of operation in which liquid columns in either limb of the reactor alternately go up and down. The working volume of the reactor is small, to within 15 L. However, it can easily be scaled up for large production in volume of cell mass in the drug and pharmaceutical industries. The authors describe the principle of operation of the see-saw bioreactor and how to automatically control the bioprocess. They discuss different control strategies as well as the thorough experimental research they conducted on this prototype bioreactor in which they applied a time delay control for yield maximization. To give you a complete understanding of the design and development of the see-saw bioreactor, the authors cover the mathematical model they use to describe the kinetics of fermentation, the genetic algorithms used for deriving the optimal time trajectories of the bioprocess variables, and the corresponding control inputs for maximizing the product yield. One chapter is devoted to the application of time delay control. Following a description of the bioreactor’s working setup in the laboratory, the authors sum up their investigation and define the future scope of work in terms of design, control, and software sensors.
Fundamentals of Modern Bioprocessing
Author: Sarfaraz K. Niazi
Publisher: CRC Press
ISBN: 1466585749
Category : Medical
Languages : en
Pages : 746
Book Description
Biological drug and vaccine manufacturing has quickly become one of the highest-value fields of bioprocess engineering, and many bioprocess engineers are now finding job opportunities that have traditionally gone to chemical engineers. Fundamentals of Modern Bioprocessing addresses this growing demand. Written by experts well-established in the field, this book connects the principles and applications of bioprocessing engineering to healthcare product manufacturing and expands on areas of opportunity for qualified bioprocess engineers and students. The book is divided into two sections: the first half centers on the engineering fundamentals of bioprocessing; while the second half serves as a handbook offering advice and practical applications. Focused on the fundamental principles at the core of this discipline, this work outlines every facet of design, component selection, and regulatory concerns. It discusses the purpose of bioprocessing (to produce products suitable for human use), describes the manufacturing technologies related to bioprocessing, and explores the rapid expansion of bioprocess engineering applications relevant to health care product manufacturing. It also considers the future of bioprocessing—the use of disposable components (which is the fastest growing area in the field of bioprocessing) to replace traditional stainless steel. In addition, this text: Discusses the many types of genetically modified organisms Outlines laboratory techniques Includes the most recent developments Serves as a reference and contains an extensive bibliography Emphasizes biological manufacturing using recombinant processing, which begins with creating a genetically modified organism using recombinant techniques Fundamentals of Modern Bioprocessing outlines both the principles and applications of bioprocessing engineering related to healthcare product manufacturing. It lays out the basic concepts, definitions, methods and applications of bioprocessing. A single volume comprehensive reference developed to meet the needs of students with a bioprocessing background; it can also be used as a source for professionals in the field.
Publisher: CRC Press
ISBN: 1466585749
Category : Medical
Languages : en
Pages : 746
Book Description
Biological drug and vaccine manufacturing has quickly become one of the highest-value fields of bioprocess engineering, and many bioprocess engineers are now finding job opportunities that have traditionally gone to chemical engineers. Fundamentals of Modern Bioprocessing addresses this growing demand. Written by experts well-established in the field, this book connects the principles and applications of bioprocessing engineering to healthcare product manufacturing and expands on areas of opportunity for qualified bioprocess engineers and students. The book is divided into two sections: the first half centers on the engineering fundamentals of bioprocessing; while the second half serves as a handbook offering advice and practical applications. Focused on the fundamental principles at the core of this discipline, this work outlines every facet of design, component selection, and regulatory concerns. It discusses the purpose of bioprocessing (to produce products suitable for human use), describes the manufacturing technologies related to bioprocessing, and explores the rapid expansion of bioprocess engineering applications relevant to health care product manufacturing. It also considers the future of bioprocessing—the use of disposable components (which is the fastest growing area in the field of bioprocessing) to replace traditional stainless steel. In addition, this text: Discusses the many types of genetically modified organisms Outlines laboratory techniques Includes the most recent developments Serves as a reference and contains an extensive bibliography Emphasizes biological manufacturing using recombinant processing, which begins with creating a genetically modified organism using recombinant techniques Fundamentals of Modern Bioprocessing outlines both the principles and applications of bioprocessing engineering related to healthcare product manufacturing. It lays out the basic concepts, definitions, methods and applications of bioprocessing. A single volume comprehensive reference developed to meet the needs of students with a bioprocessing background; it can also be used as a source for professionals in the field.
Bioprocess Engineering
Author: Kim Gail Clarke
Publisher: Elsevier
ISBN: 1782421688
Category : Technology & Engineering
Languages : en
Pages : 266
Book Description
Biotechnology is an expansive field incorporating expertise in both the life science and engineering disciplines. In biotechnology, the scientist is concerned with developing the most favourable biocatalysts, while the engineer is directed towards process performance, defining conditions and strategies that will maximize the production potential of the biocatalyst. Increasingly, the synergistic effect of the contributions of engineering and life sciences is recognised as key to the translation of new bioproducts from the laboratory bench to commercial bioprocess. Fundamental to the successful realization of the bioprocess is a need for process engineers and life scientists competent in evaluating biological systems from a cross-disciplinary viewpoint. Bioprocess engineering aims to generate core competencies through an understanding of the complementary biotechnology disciplines and their interdependence, and an appreciation of the challenges associated with the application of engineering principles in a life science context. Initial chapters focus on the microbiology, biochemistry and molecular biology that underpin biocatalyst potential for product accumulation. The following chapters develop kinetic and mass transfer principles that quantify optimum process performance and scale up. The text is wide in scope, relating to bioprocesses using bacterial, fungal and enzymic biocatalysts, batch, fed-batch and continuous strategies and free and immobilised configurations. - Details the application of chemical engineering principles for the development, design, operation and scale up of bioprocesses - Details the knowledge in microbiology, biochemistry and molecular biology relevant to bioprocess design, operation and scale up - Discusses the significance of these life sciences in defining optimum bioprocess performance
Publisher: Elsevier
ISBN: 1782421688
Category : Technology & Engineering
Languages : en
Pages : 266
Book Description
Biotechnology is an expansive field incorporating expertise in both the life science and engineering disciplines. In biotechnology, the scientist is concerned with developing the most favourable biocatalysts, while the engineer is directed towards process performance, defining conditions and strategies that will maximize the production potential of the biocatalyst. Increasingly, the synergistic effect of the contributions of engineering and life sciences is recognised as key to the translation of new bioproducts from the laboratory bench to commercial bioprocess. Fundamental to the successful realization of the bioprocess is a need for process engineers and life scientists competent in evaluating biological systems from a cross-disciplinary viewpoint. Bioprocess engineering aims to generate core competencies through an understanding of the complementary biotechnology disciplines and their interdependence, and an appreciation of the challenges associated with the application of engineering principles in a life science context. Initial chapters focus on the microbiology, biochemistry and molecular biology that underpin biocatalyst potential for product accumulation. The following chapters develop kinetic and mass transfer principles that quantify optimum process performance and scale up. The text is wide in scope, relating to bioprocesses using bacterial, fungal and enzymic biocatalysts, batch, fed-batch and continuous strategies and free and immobilised configurations. - Details the application of chemical engineering principles for the development, design, operation and scale up of bioprocesses - Details the knowledge in microbiology, biochemistry and molecular biology relevant to bioprocess design, operation and scale up - Discusses the significance of these life sciences in defining optimum bioprocess performance