Cell Complexes, Poset Topology and the Representation Theory of Algebras Arising in Algebraic Combinatorics and Discrete Geometry

Cell Complexes, Poset Topology and the Representation Theory of Algebras Arising in Algebraic Combinatorics and Discrete Geometry PDF Author: STUART. SALIOLA MARGOLIS (FRANCO. STEINBERG, BENJAMIN.)
Publisher:
ISBN: 9781470469146
Category :
Languages : en
Pages :

Get Book Here

Book Description

Cell Complexes, Poset Topology and the Representation Theory of Algebras Arising in Algebraic Combinatorics and Discrete Geometry

Cell Complexes, Poset Topology and the Representation Theory of Algebras Arising in Algebraic Combinatorics and Discrete Geometry PDF Author: STUART. SALIOLA MARGOLIS (FRANCO. STEINBERG, BENJAMIN.)
Publisher:
ISBN: 9781470469146
Category :
Languages : en
Pages :

Get Book Here

Book Description


Cell Complexes, Poset Topology and the Representation Theory of Algebras Arising in Algebraic Combinatorics and Discrete Geometry

Cell Complexes, Poset Topology and the Representation Theory of Algebras Arising in Algebraic Combinatorics and Discrete Geometry PDF Author: Stuart Margolis
Publisher: American Mathematical Society
ISBN: 1470450429
Category : Mathematics
Languages : en
Pages : 135

Get Book Here

Book Description
View the abstract.

Representation Theory of Finite Monoids

Representation Theory of Finite Monoids PDF Author: Benjamin Steinberg
Publisher: Springer
ISBN: 3319439324
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford –Munn–Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Möbius inversion.

Topics in Hyperplane Arrangements

Topics in Hyperplane Arrangements PDF Author: Marcelo Aguiar
Publisher: American Mathematical Soc.
ISBN: 1470437112
Category : Mathematics
Languages : en
Pages : 639

Get Book Here

Book Description
This monograph studies the interplay between various algebraic, geometric and combinatorial aspects of real hyperplane arrangements. It provides a careful, organized and unified treatment of several recent developments in the field, and brings forth many new ideas and results. It has two parts, each divided into eight chapters, and five appendices with background material. Part I gives a detailed discussion on faces, flats, chambers, cones, gallery intervals, lunes and other geometric notions associated with arrangements. The Tits monoid plays a central role. Another important object is the category of lunes which generalizes the classical associative operad. Also discussed are the descent and lune identities, distance functions on chambers, and the combinatorics of the braid arrangement and related examples. Part II studies the structure and representation theory of the Tits algebra of an arrangement. It gives a detailed analysis of idempotents and Peirce decompositions, and connects them to the classical theory of Eulerian idempotents. It introduces the space of Lie elements of an arrangement which generalizes the classical Lie operad. This space is the last nonzero power of the radical of the Tits algebra. It is also the socle of the left ideal of chambers and of the right ideal of Zie elements. Zie elements generalize the classical Lie idempotents. They include Dynkin elements associated to generic half-spaces which generalize the classical Dynkin idempotent. Another important object is the lune-incidence algebra which marks the beginning of noncommutative Möbius theory. These ideas are also brought upon the study of the Solomon descent algebra. The monograph is written with clarity and in sufficient detail to make it accessible to graduate students. It can also serve as a useful reference to experts.

Bimonoids for Hyperplane Arrangements

Bimonoids for Hyperplane Arrangements PDF Author: Marcelo Aguiar
Publisher: Cambridge University Press
ISBN: 110849580X
Category : Mathematics
Languages : en
Pages : 853

Get Book Here

Book Description
The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel-Hopf, Poincar -Birkhoff-Witt, and Cartier-Milnor-Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory.

Combinatorial Algebraic Topology

Combinatorial Algebraic Topology PDF Author: Dimitry Kozlov
Publisher: Springer Science & Business Media
ISBN: 9783540730514
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Toric Topology

Toric Topology PDF Author: Victor M. Buchstaber
Publisher: American Mathematical Soc.
ISBN: 147042214X
Category : Mathematics
Languages : en
Pages : 534

Get Book Here

Book Description
This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric varieties via the notion of a quasitoric manifold. Discovery of remarkable geometric structures on moment-angle manifolds led to important connections with classical and modern areas of symplectic, Lagrangian, and non-Kaehler complex geometry. A related categorical construction of moment-angle complexes and polyhedral products provides for a universal framework for many fundamental constructions of homotopical topology. The study of polyhedral products is now evolving into a separate subject of homotopy theory. A new perspective on torus actions has also contributed to the development of classical areas of algebraic topology, such as complex cobordism. This book includes many open problems and is addressed to experts interested in new ideas linking all the subjects involved, as well as to graduate students and young researchers ready to enter this beautiful new area.

The Geometry and Topology of Coxeter Groups

The Geometry and Topology of Coxeter Groups PDF Author: Michael Davis
Publisher: Princeton University Press
ISBN: 0691131384
Category : Mathematics
Languages : en
Pages : 601

Get Book Here

Book Description
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.

Torus Actions and Their Applications in Topology and Combinatorics

Torus Actions and Their Applications in Topology and Combinatorics PDF Author: V. M. Buchstaber
Publisher: American Mathematical Soc.
ISBN: 0821831860
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
Here, the study of torus actions on topological spaces is presented as a bridge connecting combinatorial and convex geometry with commutative and homological algebra, algebraic geometry, and topology. This established link helps in understanding the geometry and topology of a space with torus action by studying the combinatorics of the space of orbits. Conversely, subtle properties of a combinatorial object can be realized by interpreting it as the orbit structure for a propermanifold or as a complex acted on by a torus. The latter can be a symplectic manifold with Hamiltonian torus action, a toric variety or manifold, a subspace arrangement complement, etc., while the combinatorial objects include simplicial and cubical complexes, polytopes, and arrangements. This approachalso provides a natural topological interpretation in terms of torus actions of many constructions from commutative and homological algebra used in combinatorics. The exposition centers around the theory of moment-angle complexes, providing an effective way to study invariants of triangulations by methods of equivariant topology. The book includes many new and well-known open problems and would be suitable as a textbook. It will be useful for specialists both in topology and in combinatoricsand will help to establish even tighter connections between the subjects involved.

Combinatorial Reciprocity Theorems

Combinatorial Reciprocity Theorems PDF Author: Matthias Beck
Publisher: American Mathematical Soc.
ISBN: 147042200X
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
Combinatorial reciprocity is a very interesting phenomenon, which can be described as follows: A polynomial, whose values at positive integers count combinatorial objects of some sort, may give the number of combinatorial objects of a different sort when evaluated at negative integers (and suitably normalized). Such combinatorial reciprocity theorems occur in connections with graphs, partially ordered sets, polyhedra, and more. Using the combinatorial reciprocity theorems as a leitmotif, this book unfolds central ideas and techniques in enumerative and geometric combinatorics. Written in a friendly writing style, this is an accessible graduate textbook with almost 300 exercises, numerous illustrations, and pointers to the research literature. Topics include concise introductions to partially ordered sets, polyhedral geometry, and rational generating functions, followed by highly original chapters on subdivisions, geometric realizations of partially ordered sets, and hyperplane arrangements.