Cardiovascular and Respiratory Bioengineering

Cardiovascular and Respiratory Bioengineering PDF Author: Nenad Filipovic
Publisher: Academic Press
ISBN: 0128242299
Category : Technology & Engineering
Languages : en
Pages : 314

Get Book Here

Book Description
Cardiovascular and Respiratory Bioengineering focuses on computational tools and modeling techniques in cardiovascular and respiratory systems that help develop bioengineered solutions. The book demonstrates how these technologies can be utilized in order to tackle diseases and medical issues. It provides practical guidance on how a bioengineering or medical problem can be modeled, along with which computational models can be used. Topics include computer modeling of Purkinje fibers with different electrical potential applied, modeling of cardiomyopathies caused by sarcomeric gene mutations, altered sarcomere function, perturbations in intracellular ion homeostasis, impaired myocardial energetics at reduced costs, and more. The book also discusses blood flow through deformable blood vessels in human aorta, abdominal aortic aneurysm, carotid artery, coronary artery and plaque formation, along with content on stent deployment modeling and stent design and optimization techniques. - Features practical applications of cardiovascular and respiratory technology to counteract diseases - Includes detailed steps for the modeling of cardiovascular and respiratory systems - Explores a range of different modeling methods, including computational modeling, predictive modeling and multi-scale modeling - Covers biological processes and biomechanics relevant to cardiovascular and respiratory bioengineering

Cardiovascular and Respiratory Bioengineering

Cardiovascular and Respiratory Bioengineering PDF Author: Nenad Filipovic
Publisher: Academic Press
ISBN: 0128242299
Category : Technology & Engineering
Languages : en
Pages : 314

Get Book Here

Book Description
Cardiovascular and Respiratory Bioengineering focuses on computational tools and modeling techniques in cardiovascular and respiratory systems that help develop bioengineered solutions. The book demonstrates how these technologies can be utilized in order to tackle diseases and medical issues. It provides practical guidance on how a bioengineering or medical problem can be modeled, along with which computational models can be used. Topics include computer modeling of Purkinje fibers with different electrical potential applied, modeling of cardiomyopathies caused by sarcomeric gene mutations, altered sarcomere function, perturbations in intracellular ion homeostasis, impaired myocardial energetics at reduced costs, and more. The book also discusses blood flow through deformable blood vessels in human aorta, abdominal aortic aneurysm, carotid artery, coronary artery and plaque formation, along with content on stent deployment modeling and stent design and optimization techniques. - Features practical applications of cardiovascular and respiratory technology to counteract diseases - Includes detailed steps for the modeling of cardiovascular and respiratory systems - Explores a range of different modeling methods, including computational modeling, predictive modeling and multi-scale modeling - Covers biological processes and biomechanics relevant to cardiovascular and respiratory bioengineering

Biomechanics of Soft Tissue in Cardiovascular Systems

Biomechanics of Soft Tissue in Cardiovascular Systems PDF Author: Gerhard A. Holzapfel
Publisher: Springer Science & Business Media
ISBN: 9783211004555
Category : Technology & Engineering
Languages : en
Pages : 360

Get Book Here

Book Description
The book is written by leading experts in the field presenting an up-to-date view of the subject matter in a didactically sound manner. It presents a review of the current knowledge of the behaviour of soft tissues in the cardiovascular system under mechanical loads, and the importance of constitutive laws in understanding the underlying mechanics is highlighted. Cells are also described together with arteries, tendons and ligaments, heart, and other biological tissues of current research interest in biomechanics. This includes experimental, continuum mechanical and computational perspectives, with the emphasis on nonlinear behaviour, and the simulation of mechanical procedures such as balloon angioplasty.

Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology

Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology PDF Author: Willem L. van Meurs
Publisher: McGraw Hill Professional
ISBN: 0071714464
Category : Technology & Engineering
Languages : en
Pages : 216

Get Book Here

Book Description
THEORY AND PRACTICE OF MODELING AND SIMULATING HUMAN PHYSIOLOGY Written by a coinventor of the Human Patient Simulator (HPS) and past president of the Society in Europe for Simulation Applied to Medicine (SESAM), Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology is a compact and consistent introduction to this expanding field. The book divides the modeling and simulation process into five manageable steps--requirements, conceptual models, mathematical models, software implementation, and simulation results and validation. A framework and a basic set of deterministic, continuous-time models for the cardiorespiratory system are provided. This timely resource also addresses advanced topics, including sensitivity analysis and setting model requirements as part of an encompassing simulation and simulator design. Practical examples provide you with the skills to evaluate and adapt existing physiologic models or create new ones for specific applications. Coverage includes: Signals and systems Model requirements Conceptual models Mathematical models Software implementation Simulation results and model validation Cardiorespiratory system model Circulation Respiration Physiologic control Sensitivity analysis of a cardiovascular model Design of model-driven acute care training simulators “Uniquely qualified to author such a text, van Meurs is one of the original developers of CAE Healthcare’s Human Patient Simulator (HPS). ...His understanding of mathematics, human physiology, pharmacology, control systems, and systems engineering, combined with a conversational writing style, results in a readable text. ...The ample illustrations and tables also break up the text and make reading the book easier on the eyes. ...concise yet in conversational style, with real-life examples. This book is highly recommended for coursework in physiologic modeling and for all who are interested in simulator design and development. The book pulls all these topics together under one cover and is an important contribution to biomedical literature.” --IEEE Pulse, January 2014 “This book is written by a professional engineer who is unique in that he seems to have a natural understanding of 3 key areas as follows: the hardware involved with simulators, human physiology, and mathematical modeling. Willem van Meurs is one of the inventors of the model-driven human patient simulator (HPS), and so, he is very qualified to write this book. The book is written in a clear way, using the first person throughout, in a conversational manner, with a style that involves posing questions and answering them in subsequent text. ...The book starts with a very useful introduction and background chapter, setting out the scene for the rest of the book. ...I have used his book in enhancing my own talks and understanding human patient simulation and can strongly recommend it.” --Simulation in Healthcare December, 2012 Reviewed by Mark A. Tooley, Ph.D., Department of Medical Physics and Bioengineering, Royal United Hospital, Combe Park, Bath, UK.

Biofluid Mechanics in Cardiovascular Systems

Biofluid Mechanics in Cardiovascular Systems PDF Author: Lee Waite
Publisher: McGraw Hill Professional
ISBN: 0071588949
Category : Science
Languages : en
Pages : 218

Get Book Here

Book Description
Biofliudics has gained in importance in recent years, forcing engineers to redefine mechanical engineering theories and apply them to biological functions. To date, no book has successfully done this. Biofliud Mechanics in Cardiovascular Systems is one of the first books to take an interdisciplinary approach to the subject. Written by a professor and researcher, this book will combine engineering principles with human biology to deliver a text specifically designed for biomedical engineering professionals and students.

Research Awards Index

Research Awards Index PDF Author:
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 1380

Get Book Here

Book Description


Medical Physics and Biomedical Engineering

Medical Physics and Biomedical Engineering PDF Author: B.H Brown
Publisher: CRC Press
ISBN: 9780750303682
Category : Medical
Languages : en
Pages : 774

Get Book Here

Book Description
Medical Physics and Biomedical Engineering provides broad coverage appropriate for senior undergraduates and graduates in medical physics and biomedical engineering. Divided into two parts, the first part presents the underlying physics, electronics, anatomy, and physiology and the second part addresses practical applications. The structured approach means that later chapters build and broaden the material introduced in the opening chapters; for example, students can read chapters covering the introductory science of an area and then study the practical application of the topic. Coverage includes biomechanics; ionizing and nonionizing radiation and measurements; image formation techniques, processing, and analysis; safety issues; biomedical devices; mathematical and statistical techniques; physiological signals and responses; and respiratory and cardiovascular function and measurement. Where necessary, the authors provide references to the mathematical background and keep detailed derivations to a minimum. They give comprehensive references to junior undergraduate texts in physics, electronics, and life sciences in the bibliographies at the end of each chapter.

Research Grants Index

Research Grants Index PDF Author: National Institutes of Health (U.S.). Division of Research Grants
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 1224

Get Book Here

Book Description


World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany

World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany PDF Author: Olaf Dössel
Publisher: Springer Science & Business Media
ISBN: 3642038859
Category : Technology & Engineering
Languages : en
Pages : 971

Get Book Here

Book Description
Present Your Research to the World! The World Congress 2009 on Medical Physics and Biomedical Engineering – the triennial scientific meeting of the IUPESM - is the world’s leading forum for presenting the results of current scientific work in health-related physics and technologies to an international audience. With more than 2,800 presentations it will be the biggest conference in the fields of Medical Physics and Biomedical Engineering in 2009! Medical physics, biomedical engineering and bioengineering have been driving forces of innovation and progress in medicine and healthcare over the past two decades. As new key technologies arise with significant potential to open new options in diagnostics and therapeutics, it is a multidisciplinary task to evaluate their benefit for medicine and healthcare with respect to the quality of performance and therapeutic output. Covering key aspects such as information and communication technologies, micro- and nanosystems, optics and biotechnology, the congress will serve as an inter- and multidisciplinary platform that brings together people from basic research, R&D, industry and medical application to discuss these issues. As a major event for science, medicine and technology the congress provides a comprehensive overview and in–depth, first-hand information on new developments, advanced technologies and current and future applications. With this Final Program we would like to give you an overview of the dimension of the congress and invite you to join us in Munich! Olaf Dössel Congress President Wolfgang C.

Cardiovascular Biomechanics

Cardiovascular Biomechanics PDF Author: Peter R. Hoskins
Publisher: Springer
ISBN: 3319464078
Category : Medical
Languages : en
Pages : 462

Get Book Here

Book Description
This book provides a balanced presentation of the fundamental principles of cardiovascular biomechanics research, as well as its valuable clinical applications. Pursuing an integrated approach at the interface of the life sciences, physics and engineering, it also includes extensive images to explain the concepts discussed. With a focus on explaining the underlying principles, this book examines the physiology and mechanics of circulation, mechanobiology and the biomechanics of different components of the cardiovascular system, in-vivo techniques, in-vitro techniques, and the medical applications of this research. Written for undergraduate and postgraduate students and including sample problems at the end of each chapter, this interdisciplinary text provides an essential introduction to the topic. It is also an ideal reference text for researchers and clinical practitioners, and will benefit a wide range of students and researchers including engineers, physicists, biologists and clinicians who are interested in the area of cardiovascular biomechanics.

Medical Physics and Biomedical Engineering

Medical Physics and Biomedical Engineering PDF Author: B.H Brown
Publisher: Taylor & Francis
ISBN: 1439833737
Category : Medical
Languages : en
Pages : 763

Get Book Here

Book Description
Medical Physics and Biomedical Engineering provides broad coverage appropriate for senior undergraduates and graduates in medical physics and biomedical engineering. Divided into two parts, the first part presents the underlying physics, electronics, anatomy, and physiology and the second part addresses practical applications. The structured approach means that later chapters build and broaden the material introduced in the opening chapters; for example, students can read chapters covering the introductory science of an area and then study the practical application of the topic. Coverage includes biomechanics; ionizing and nonionizing radiation and measurements; image formation techniques, processing, and analysis; safety issues; biomedical devices; mathematical and statistical techniques; physiological signals and responses; and respiratory and cardiovascular function and measurement. Where necessary, the authors provide references to the mathematical background and keep detailed derivations to a minimum. They give comprehensive references to junior undergraduate texts in physics, electronics, and life sciences in the bibliographies at the end of each chapter.