C2- and C3-Symmetric Chiral Bis- and Tris(phosphines) in Asymmetric Catalysis

C2- and C3-Symmetric Chiral Bis- and Tris(phosphines) in Asymmetric Catalysis PDF Author: Zhiming Xu
Publisher:
ISBN:
Category :
Languages : en
Pages : 332

Get Book Here

Book Description
Chapter 1. Effect of linker length on selectivity and cooperative reactivity in platinum-catalyzed asymmetric alkylation of bis(phenylphosphino)alkanes. The selectivity of catalytic asymmetric transformations of bifunctional symmetrical substrates often depends on the linker between the two reactive sites. If the catalyst controls the selectivity of reactions at both sites, the rac product will be formed in high enantiomeric ratio (er) via asymmetric amplification. Substrate control may augment this selectivity (positive cooperativity) or detract from it (negative cooperativity). We investigated the effect of linker length on the selectivity of catalytic asymmetric alkylation of the bis(secondary phosphines) PhHP-(CH2)[subscript n]PHPh (n = 2-6, 1a-e) with benzyl bromide using the base NaOSiMe3 and the catalyst precursor Pt((R,R)-Me-DuPhos)(Ph)(Cl). The two alkylations of bis(secondary phosphines) 1b-e with longer linker lengths (n = 3-6) showed identical selectivity, within experimental error. This catalyst control resulted in asymmetric amplification of rac-2. In contrast, the selectivity of the first alkylation of ethano-bridged 1a was lower than that in 1b-e (negative cooperativity), but the selectivity of the second alkylation increased due to positive cooperativity. I developed an efficient synthesis of the intermediate PhHP(CH2)2PPh(CH2Ph) (3a), which was required for determination of the selectivity of both steps in Pt-catalyzed alkylation of 1a. Possible mechanistic explanations for the observed dependence of selectivity on linker length are discussed in this chapter. Chapter 2. Selective formation of a C3-symmetric P-stereogenic tris(phosphine) via platinum-catalyzed asymmetric alkylation of a tris(secondary phosphine). C2-symmetric bis(phosphines) are the most common and successful ligands for metal-catalyzed reactions. Considering the great success of C2-symmetric ligands in asymmetric catalysis, C3-symmetric chiral tris(phosphines) were proposed to be useful in octahedral complexes, creating three homotopic sites. However, very little is known about C3-symmetric tris(phosphines) and their applications, mostly because of the lack of synthetic routes. We used Pt-catalyzed asymmetric alkylation to prepare enantiomerically enriched C3-symmetric, P-stereogenic tripodal tris(phosphines) from the tris(secondary phosphine) MeC(CH2PHPh)3 (5 a racemic mixture of C1- and C3-symmetric diastereomers) and a benzl bromide, utilizing the Pt((R,R)-Me-Duphos)(Ph)(Cl) catalyst precursor and a base. Pt-catalyzed alkylation of MeC(CH2PHPh)3 (5) with 2-cyanobenzyl bromide gave a mixture of tris(phosphines) MeC(CH2PPh(CH2Ar))3 (6) enriched in C3-6; oxidation of 6 by sulfur or H2O2 formed phosphine sulfide S-6 and oxide O-6. Hydrogen bonding between O-6 and the chiral amino acid (S)-Fmoc-Trip(BOC)-OH leads to the formation of new diastereomers. By integrating the 31P NMR spectra, I measured the dr and er values. Tris(phosphine) 6 was formed with a disatereomeric ratio (dr - C3/C1) of 2.1(2) and enantiomeric ratios of 54(10) and 3.8(7) for C3-3 and C1-3 respectively, which showed that the selectivity of the triple alkylation was not the same at each site (substrate control). Chapter 3. Screening racemic catalysts provides information on selectivity and mechanism in platinum-mediated asymmetric alkylation of bis- and tris(secondary phosphines). Screening racemic catalysts for transformations of symmetrical bifunctional substrates can provide information on the selectivity of an enantiopure catalyst. This idea was extended to Pt-catalyzed asymmetric alkylation of the bis(secondary phosphines) PhHP(CH2)3PHPh and PhHPCH2CMe2CH2PHPh and the tris(phosphine) MeC(CH2PHPh)3 with benzyl bromides using the catalyst precursors Pt(Me-DuPhos)(Ph)(CI) and Pt(BenzP*)(Ph)(CI). Depending on the catalyst and the substrate, these reactions occured under catalyst control without dissociation of the substrate, or under substrate control with or without substrate dissociation. The resulting structure-selectivity relationships provided mechanistic information. Chapter 4. Synthesis of new chiral bis(phospholane) metal-pincer complexes. Metal pincer complexes have received great attention in recent years as robust catalyst precursors. However, chiral metal pincer complexes for application in asymmetric catalysis are rare. Dialkylphospholane groups have an outstanding track record in asymmetric catalysis (commercial DuPhos and BPE ligands) and their steric properties can be easily controlled by tuning the alkyl substituents on the phospholane ring. These donors have similar steric and electronic properties to the common used bulky dialkylphosphine groups (P(t-Bu)2, P(i-Pr)2, etc.). Optimization of the synthesis of chiral PCP ligands bearing such phospholane groups and investigation of their coordination chemistry are discussed in this chapter.

C2- and C3-Symmetric Chiral Bis- and Tris(phosphines) in Asymmetric Catalysis

C2- and C3-Symmetric Chiral Bis- and Tris(phosphines) in Asymmetric Catalysis PDF Author: Zhiming Xu
Publisher:
ISBN:
Category :
Languages : en
Pages : 332

Get Book Here

Book Description
Chapter 1. Effect of linker length on selectivity and cooperative reactivity in platinum-catalyzed asymmetric alkylation of bis(phenylphosphino)alkanes. The selectivity of catalytic asymmetric transformations of bifunctional symmetrical substrates often depends on the linker between the two reactive sites. If the catalyst controls the selectivity of reactions at both sites, the rac product will be formed in high enantiomeric ratio (er) via asymmetric amplification. Substrate control may augment this selectivity (positive cooperativity) or detract from it (negative cooperativity). We investigated the effect of linker length on the selectivity of catalytic asymmetric alkylation of the bis(secondary phosphines) PhHP-(CH2)[subscript n]PHPh (n = 2-6, 1a-e) with benzyl bromide using the base NaOSiMe3 and the catalyst precursor Pt((R,R)-Me-DuPhos)(Ph)(Cl). The two alkylations of bis(secondary phosphines) 1b-e with longer linker lengths (n = 3-6) showed identical selectivity, within experimental error. This catalyst control resulted in asymmetric amplification of rac-2. In contrast, the selectivity of the first alkylation of ethano-bridged 1a was lower than that in 1b-e (negative cooperativity), but the selectivity of the second alkylation increased due to positive cooperativity. I developed an efficient synthesis of the intermediate PhHP(CH2)2PPh(CH2Ph) (3a), which was required for determination of the selectivity of both steps in Pt-catalyzed alkylation of 1a. Possible mechanistic explanations for the observed dependence of selectivity on linker length are discussed in this chapter. Chapter 2. Selective formation of a C3-symmetric P-stereogenic tris(phosphine) via platinum-catalyzed asymmetric alkylation of a tris(secondary phosphine). C2-symmetric bis(phosphines) are the most common and successful ligands for metal-catalyzed reactions. Considering the great success of C2-symmetric ligands in asymmetric catalysis, C3-symmetric chiral tris(phosphines) were proposed to be useful in octahedral complexes, creating three homotopic sites. However, very little is known about C3-symmetric tris(phosphines) and their applications, mostly because of the lack of synthetic routes. We used Pt-catalyzed asymmetric alkylation to prepare enantiomerically enriched C3-symmetric, P-stereogenic tripodal tris(phosphines) from the tris(secondary phosphine) MeC(CH2PHPh)3 (5 a racemic mixture of C1- and C3-symmetric diastereomers) and a benzl bromide, utilizing the Pt((R,R)-Me-Duphos)(Ph)(Cl) catalyst precursor and a base. Pt-catalyzed alkylation of MeC(CH2PHPh)3 (5) with 2-cyanobenzyl bromide gave a mixture of tris(phosphines) MeC(CH2PPh(CH2Ar))3 (6) enriched in C3-6; oxidation of 6 by sulfur or H2O2 formed phosphine sulfide S-6 and oxide O-6. Hydrogen bonding between O-6 and the chiral amino acid (S)-Fmoc-Trip(BOC)-OH leads to the formation of new diastereomers. By integrating the 31P NMR spectra, I measured the dr and er values. Tris(phosphine) 6 was formed with a disatereomeric ratio (dr - C3/C1) of 2.1(2) and enantiomeric ratios of 54(10) and 3.8(7) for C3-3 and C1-3 respectively, which showed that the selectivity of the triple alkylation was not the same at each site (substrate control). Chapter 3. Screening racemic catalysts provides information on selectivity and mechanism in platinum-mediated asymmetric alkylation of bis- and tris(secondary phosphines). Screening racemic catalysts for transformations of symmetrical bifunctional substrates can provide information on the selectivity of an enantiopure catalyst. This idea was extended to Pt-catalyzed asymmetric alkylation of the bis(secondary phosphines) PhHP(CH2)3PHPh and PhHPCH2CMe2CH2PHPh and the tris(phosphine) MeC(CH2PHPh)3 with benzyl bromides using the catalyst precursors Pt(Me-DuPhos)(Ph)(CI) and Pt(BenzP*)(Ph)(CI). Depending on the catalyst and the substrate, these reactions occured under catalyst control without dissociation of the substrate, or under substrate control with or without substrate dissociation. The resulting structure-selectivity relationships provided mechanistic information. Chapter 4. Synthesis of new chiral bis(phospholane) metal-pincer complexes. Metal pincer complexes have received great attention in recent years as robust catalyst precursors. However, chiral metal pincer complexes for application in asymmetric catalysis are rare. Dialkylphospholane groups have an outstanding track record in asymmetric catalysis (commercial DuPhos and BPE ligands) and their steric properties can be easily controlled by tuning the alkyl substituents on the phospholane ring. These donors have similar steric and electronic properties to the common used bulky dialkylphosphine groups (P(t-Bu)2, P(i-Pr)2, etc.). Optimization of the synthesis of chiral PCP ligands bearing such phospholane groups and investigation of their coordination chemistry are discussed in this chapter.

Asymmetric Catalysis with a C2-symmetric Bisoxazolidine and Enantioselective Sensing Using Axially Chiral Diacridylnaphthalenes

Asymmetric Catalysis with a C2-symmetric Bisoxazolidine and Enantioselective Sensing Using Axially Chiral Diacridylnaphthalenes PDF Author: Shuanglong Liu
Publisher:
ISBN:
Category : Asymmetric synthesis
Languages : en
Pages : 424

Get Book Here

Book Description


Catalyst Separation, Recovery and Recycling

Catalyst Separation, Recovery and Recycling PDF Author: David J. Cole-Hamilton
Publisher: Springer Science & Business Media
ISBN: 9781402040863
Category : Science
Languages : en
Pages : 270

Get Book Here

Book Description
This book looks at new ways of tackling the problem of separating reaction products from homogeneous catalytic solutions. The new processes involve low leaching supported catalysts, soluble supports such as polymers and dendrimers and unusual solvents such as water, fluorinated organics, ionic liquids and supercritical fluids. The advantages of the different possibilities are discussed alongside suggestions for further research that will be required for commercialisation. Unlike other books, in addition to the chemistry involved, the book looks at the process design that would be required to bring the new approaches to fruition. Comparisons are given with existing processes that have already been successfully applied and examples are given where these approaches are not suitable. The book includes: - New processes for the separation of products from solutions containing homogeneous catalysts - Catalysts on insoluble or soluble supports – fixed bed catalysts - continuous flow or ultrafiltration - Biphasic systems: water - organic, fluorous - organic, ionic liquid – organic, supercritical fluids (monophasic or biphasic with water, organic or ionic liquid) - Comparisons with current processes involving atmospheric or low temperature distillation - Consideration of Chemistry and Process Design - Advantages and disadvantages of each process exposed - Consideration of what else is need for commercialisation

The Organometallic Chemistry of the Transition Metals

The Organometallic Chemistry of the Transition Metals PDF Author: Robert H. Crabtree
Publisher: John Wiley & Sons
ISBN: 0471718750
Category : Science
Languages : en
Pages : 600

Get Book Here

Book Description
Fully updated and expanded to reflect recent advances, this Fourth Edition of the classic text provides students and professional chemists with an excellent introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications.

Metal Catalyzed Cascade Reactions

Metal Catalyzed Cascade Reactions PDF Author: Thomas J.J. Müller
Publisher: Springer
ISBN: 3540329595
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
This book highlights cyclization via carbopalladation and acylpalladation and Heck-pericyclic sequences. They discuss p-allyl palladium-based cascade reactions, Michael-type additions as an entry to transition-metal-promoted cyclizative transformations, and sequential or consecutive palladium-catalyzed processes, and show Pauson-Khand cascades, metal-catalyzed cyclizations of acyclic precursors, as well as cascade and sequential ruthenium-catalyzed transformations. This is a comprehensive overview of an exciting and highly dynamic, and innovative methodological concept.

Silicon-Containing Dendritic Polymers

Silicon-Containing Dendritic Polymers PDF Author: Petar R. Dvornic
Publisher: Springer Science & Business Media
ISBN: 140208174X
Category : Technology & Engineering
Languages : en
Pages : 428

Get Book Here

Book Description
During the last two decades silicon-containing dendritic polymers have become one of the fastest growing areas of development in polymer science. The eruption of interest in these new polymers stems from their unprecedented molecular architecture, unique resulting properties and the realization that they represent ideal building blocks for chemical nanotechnology. This is the first book to solely focus on silicon-containing dendritic polymers. The contributions of those experts who originally introduced each field or played a major role in its progress are reported. The developments in all major areas of this field are presented from their origins to the present. It is anticipated that this text will become an invaluable guide and vanguard of reference for experienced scientists interested in the fields of polymer and material science, synthetic chemistry, and nanotechnology. It will also serve advanced graduate students either as a source of creative inspiration or as a textbook for appropriate courses.

Organophosphorus Chemistry

Organophosphorus Chemistry PDF Author: Viktor Iaroshenko
Publisher: John Wiley & Sons
ISBN: 3527335722
Category : Science
Languages : en
Pages : 586

Get Book Here

Book Description
Filling the gap for an up-to-date reference that presents the field of organophosphorus chemistry in a comprehensive and clearly structured way, this one-stop source covers the chemistry, properties, and applications from life science and medicine. Divided into two parts, the first presents the chemistry of various phosphorus-containing compounds and their synthesis, including ylides, acids, and heterocycles. The second part then goes on to look at applications in life science and bioorganic chemistry. Last but not least, such important practical aspects as 31P-NMR and protecting strategies for these compounds are presented. For organic, bioinorganic, and medicinal chemists, as well as those working on organometallics, and for materials scientists. The book, a contributed work, features a team of renowned scientists from around the world whose expertise spans the many aspects of modern organophosphorus chemistry.

Green Chemistry Metrics

Green Chemistry Metrics PDF Author: Andrew P. Dicks
Publisher: Springer
ISBN: 3319105000
Category : Science
Languages : en
Pages : 95

Get Book Here

Book Description
This contribution to SpringerBriefs in Green Chemistry outlines and discusses the four major green chemistry metrics (atom economy, reaction mass efficiency, E factor and process mass intensity), at a level that is comprehensible by upper-level undergraduates. Such students have previously received fundamental training in organic chemistry basics, and are ideally positioned to learn about green chemistry principles, of which metrics is one foundational pillar. Following this, other green metrics in common use are discussed, along with applications that allow important calculations to be easily undertaken. Finally, an introduction to metrics in the context of life cycle analyses is presented. It should be noted that no other available publication teaches green chemistry metrics in detail with an emphasis on educating undergraduates, whilst simultaneously providing a contemporary industrial flavour to the material.

Boron

Boron PDF Author: Meng Li
Publisher: Royal Society of Chemistry
ISBN: 184973674X
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description
This book is an essential resource for anyone interested in the chemistry and applications of boron.

Catalytic Asymmetric Synthesis

Catalytic Asymmetric Synthesis PDF Author: Takahiko Akiyama
Publisher: John Wiley & Sons
ISBN: 1119736412
Category : Science
Languages : en
Pages : 798

Get Book Here

Book Description
Catalytic Asymmetric Synthesis Seminal text presenting detailed accounts of the most important catalytic asymmetric reactions known today This book covers the preparation of enantiomerically pure or enriched chemical compounds by use of chiral catalyst molecules. While reviewing the most important catalytic methods for asymmetric organic synthesis, this book highlights the most important and recent developments in catalytic asymmetric synthesis. Edited by two well-qualified experts, sample topics covered in the work include: Metal catalysis, organocatalysis, photoredox catalysis, enzyme catalysis C–H bond functionalization reactions Carbon–carbon bond formation reactions, carbon–halogen bond formation reactions, hydrogenations, polymerizations, flow reactions Axially chiral compounds Retaining the best of its predecessors but now thoroughly up to date with the important and recent developments in catalytic asymmetric synthesis, the 4th edition of Catalytic Asymmetric Synthesis serves as an excellent desktop reference and text for researchers and students, from upper-level undergraduates all the way to experienced professionals in industry or academia.