C*-Algebras and Mathematical Foundations of Quantum Statistical Mechanics

C*-Algebras and Mathematical Foundations of Quantum Statistical Mechanics PDF Author: Jean-Bernard Bru
Publisher: Springer Nature
ISBN: 3031289498
Category : Science
Languages : en
Pages : 497

Get Book Here

Book Description
This textbook provides a comprehensive introduction to the mathematical foundations of quantum statistical physics. It presents a conceptually profound yet technically accessible path to the C*-algebraic approach to quantum statistical mechanics, demonstrating how key aspects of thermodynamic equilibrium can be derived as simple corollaries of classical results in convex analysis. Using C*-algebras as examples of ordered vector spaces, this book makes various aspects of C*-algebras and their applications to the mathematical foundations of quantum theory much clearer from both mathematical and physical perspectives. It begins with the simple case of Gibbs states on matrix algebras and gradually progresses to a more general setting that considers the thermodynamic equilibrium of infinitely extended quantum systems. The book also illustrates how first-order phase transitions and spontaneous symmetry breaking can occur, in contrast to the finite-dimensional situation. One of the unique features of this book is its thorough and clear treatment of the theory of equilibrium states of quantum mean-field models. This work is self-contained and requires only a modest background in analysis, topology, and functional analysis from the reader. It is suitable for both mathematicians and physicists with a specific interest in quantum statistical physics.

C*-Algebras and Mathematical Foundations of Quantum Statistical Mechanics

C*-Algebras and Mathematical Foundations of Quantum Statistical Mechanics PDF Author: Jean-Bernard Bru
Publisher: Springer Nature
ISBN: 3031289498
Category : Science
Languages : en
Pages : 497

Get Book Here

Book Description
This textbook provides a comprehensive introduction to the mathematical foundations of quantum statistical physics. It presents a conceptually profound yet technically accessible path to the C*-algebraic approach to quantum statistical mechanics, demonstrating how key aspects of thermodynamic equilibrium can be derived as simple corollaries of classical results in convex analysis. Using C*-algebras as examples of ordered vector spaces, this book makes various aspects of C*-algebras and their applications to the mathematical foundations of quantum theory much clearer from both mathematical and physical perspectives. It begins with the simple case of Gibbs states on matrix algebras and gradually progresses to a more general setting that considers the thermodynamic equilibrium of infinitely extended quantum systems. The book also illustrates how first-order phase transitions and spontaneous symmetry breaking can occur, in contrast to the finite-dimensional situation. One of the unique features of this book is its thorough and clear treatment of the theory of equilibrium states of quantum mean-field models. This work is self-contained and requires only a modest background in analysis, topology, and functional analysis from the reader. It is suitable for both mathematicians and physicists with a specific interest in quantum statistical physics.

Operator Algebras and Quantum Statistical Mechanics 1

Operator Algebras and Quantum Statistical Mechanics 1 PDF Author: Ola Bratteli
Publisher: Springer Science & Business Media
ISBN: 9783540170938
Category : Mathematics
Languages : en
Pages : 528

Get Book Here

Book Description
This is the first of two volumes presenting the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis. The introductory chapter surveys the history and justification of algebraic techniques in statistical physics and outlines the applications that have been made. The second edition contains new and improved results. The principal changes include: A more comprehensive discussion of dissipative operators and analytic elements; the positive resolution of the question of whether maximal orthogonal probability measure on the state space of C-algebra were automatically maximal along all the probability measures on the space.

Mathematical Foundations of Quantum Mechanics

Mathematical Foundations of Quantum Mechanics PDF Author: John von Neumann
Publisher: Princeton University Press
ISBN: 9780691028934
Category : Mathematics
Languages : en
Pages : 462

Get Book Here

Book Description
A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books

An Introduction to the Mathematical Structure of Quantum Mechanics

An Introduction to the Mathematical Structure of Quantum Mechanics PDF Author: F. Strocchi
Publisher: World Scientific
ISBN: 9812835229
Category : Science
Languages : en
Pages : 193

Get Book Here

Book Description
Arising out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students, this book formulates the mathematical structure of QM in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables.

Mathematical Foundations of Quantum Theory

Mathematical Foundations of Quantum Theory PDF Author: A.R. Marlow
Publisher: Elsevier
ISBN: 0323141188
Category : Science
Languages : en
Pages : 383

Get Book Here

Book Description
Mathematical Foundations of Quantum Theory is a collection of papers presented at the 1977 conference on the Mathematical Foundations of Quantum Theory, held in New Orleans. The contributors present their topics from a wide variety of backgrounds and specialization, but all shared a common interest in answering quantum issues. Organized into 20 chapters, this book's opening chapters establish a sound mathematical basis for quantum theory and a mode of observation in the double slit experiment. This book then describes the Lorentz particle system and other mathematical structures with which fundamental quantum theory must deal, and then some unsolved problems in the quantum logic approach to the foundations of quantum mechanics are considered. Considerable chapters cover topics on manuals and logics for quantum mechanics. This book also examines the problems in quantum logic, and then presents examples of their interpretation and relevance to nonclassical logic and statistics. The accommodation of conventional Fermi-Dirac and Bose-Einstein statistics in quantum mechanics or quantum field theory is illustrated. The final chapters of the book present a system of axioms for nonrelativistic quantum mechanics, with particular emphasis on the role of density operators as states. Specific connections of this theory with other formulations of quantum theory are also considered. These chapters also deal with the determination of the state of an elementary quantum mechanical system by the associated position and momentum distribution. This book is of value to physicists, mathematicians, and researchers who are interested in quantum theory.

Lectures on Quantum Mechanics for Mathematics Students

Lectures on Quantum Mechanics for Mathematics Students PDF Author: L. D. Faddeev
Publisher: American Mathematical Soc.
ISBN: 082184699X
Category : Science
Languages : en
Pages : 250

Get Book Here

Book Description
Describes the relation between classical and quantum mechanics. This book contains a discussion of problems related to group representation theory and to scattering theory. It intends to give a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework.

Physics for Mathematicians

Physics for Mathematicians PDF Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733

Get Book Here

Book Description


Quantum Mechanics and Its Emergent Macrophysics

Quantum Mechanics and Its Emergent Macrophysics PDF Author: Geoffrey Sewell
Publisher: Princeton University Press
ISBN: 0691058326
Category : Science
Languages : en
Pages : 305

Get Book Here

Book Description
The quantum theory of macroscopic systems is a vast, ever-developing area of science that serves to relate the properties of complex physical objects to those of their constituent particles. Its essential challenge is that of finding the conceptual structures needed for the description of the various states of organization of many-particle quantum systems. In this book, Geoffrey Sewell provides a new approach to the subject, based on a "macrostatistical mechanics," which contrasts sharply with the standard microscopic treatments of many-body problems. Sewell begins by presenting the operator algebraic framework for the theory. He then undertakes a macrostatistical treatment of both equilibrium and nonequilibrium thermodynamics, which yields a major new characterization of a complete set of thermodynamic variables and a nonlinear generalization of the Onsager theory. The remainder of the book focuses on ordered and chaotic structures that arise in some key areas of condensed matter physics. This includes a general derivation of superconductive electrodynamics from the assumptions of off-diagonal long-range order, gauge covariance, and thermodynamic stability, which avoids the enormous complications of the microscopic treatments. Sewell also unveils a theoretical framework for phase transitions far from thermal equilibrium. Throughout, the mathematics is kept clear without sacrificing rigor. Representing a coherent approach to the vast problem of the emergence of macroscopic phenomena from quantum mechanics, this well-written book is addressed to physicists, mathematicians, and other scientists interested in quantum theory, statistical physics, thermodynamics, and general questions of order and chaos.

Mathematical Concepts of Quantum Mechanics

Mathematical Concepts of Quantum Mechanics PDF Author: Stephen J. Gustafson
Publisher: Springer Nature
ISBN: 3030595625
Category : Mathematics
Languages : en
Pages : 453

Get Book Here

Book Description
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include: many-body systems, modern perturbation theory, path integrals, the theory of resonances, adiabatic theory, geometrical phases, Aharonov-Bohm effect, density functional theory, open systems, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. Some of the sections could be used for introductions to geometrical methods in Quantum Mechanics, to quantum information theory and to quantum electrodynamics and quantum field theory.

Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems PDF Author: David Lavis
Publisher: Springer Science & Business Media
ISBN: 3540644369
Category : Science
Languages : en
Pages : 452

Get Book Here

Book Description
Most of the interesting and difficult problems in statistical mechanics arise when the constituent particles of the system interact with each other with pair or multipartiele energies. The types of behaviour which occur in systems because of these interactions are referred to as cooperative phenomena giving rise in many cases to phase transitions. This book and its companion volume (Lavis and Bell 1999, referred to in the text simply as Volume 1) are princi pally concerned with phase transitions in lattice systems. Due mainly to the insights gained from scaling theory and renormalization group methods, this subject has developed very rapidly over the last thirty years. ' In our choice of topics we have tried to present a good range of fundamental theory and of applications, some of which reflect our own interests. A broad division of material can be made between exact results and ap proximation methods. We have found it appropriate to inelude some of our discussion of exact results in this volume and some in Volume 1. Apart from this much of the discussion in Volume 1 is concerned with mean-field theory. Although this is known not to give reliable results elose to a critical region, it often provides a good qualitative picture for phase diagrams as a whole. For complicated systems some kind of mean-field method is often the only tractable method available. In this volume our main concern is with scaling theory, algebraic methods and the renormalization group.