Bousfield Classes and Ohkawa's Theorem

Bousfield Classes and Ohkawa's Theorem PDF Author: Takeo Ohsawa
Publisher: Springer Nature
ISBN: 9811515883
Category : Mathematics
Languages : en
Pages : 438

Get Book Here

Book Description
This volume originated in the workshop held at Nagoya University, August 28–30, 2015, focusing on the surprising and mysterious Ohkawa's theorem: the Bousfield classes in the stable homotopy category SH form a set. An inspiring, extensive mathematical story can be narrated starting with Ohkawa's theorem, evolving naturally with a chain of motivational questions: Ohkawa's theorem states that the Bousfield classes of the stable homotopy category SH surprisingly forms a set, which is still very mysterious. Are there any toy models where analogous Bousfield classes form a set with a clear meaning? The fundamental theorem of Hopkins, Neeman, Thomason, and others states that the analogue of the Bousfield classes in the derived category of quasi-coherent sheaves Dqc(X) form a set with a clear algebro-geometric description. However, Hopkins was actually motivated not by Ohkawa's theorem but by his own theorem with Smith in the triangulated subcategory SHc, consisting of compact objects in SH. Now the following questions naturally occur: (1) Having theorems of Ohkawa and Hopkins-Smith in SH, are there analogues for the Morel-Voevodsky A1-stable homotopy category SH(k), which subsumes SH when k is a subfield of C?, (2) Was it not natural for Hopkins to have considered Dqc(X)c instead of Dqc(X)? However, whereas there is a conceptually simple algebro-geometrical interpretation Dqc(X)c = Dperf(X), it is its close relative Dbcoh(X) that traditionally, ever since Oka and Cartan, has been intensively studied because of its rich geometric and physical information. This book contains developments for the rest of the story and much more, including the chromatics homotopy theory, which the Hopkins–Smith theorem is based upon, and applications of Lurie's higher algebra, all by distinguished contributors.

Bousfield Classes and Ohkawa's Theorem

Bousfield Classes and Ohkawa's Theorem PDF Author: Takeo Ohsawa
Publisher: Springer Nature
ISBN: 9811515883
Category : Mathematics
Languages : en
Pages : 438

Get Book Here

Book Description
This volume originated in the workshop held at Nagoya University, August 28–30, 2015, focusing on the surprising and mysterious Ohkawa's theorem: the Bousfield classes in the stable homotopy category SH form a set. An inspiring, extensive mathematical story can be narrated starting with Ohkawa's theorem, evolving naturally with a chain of motivational questions: Ohkawa's theorem states that the Bousfield classes of the stable homotopy category SH surprisingly forms a set, which is still very mysterious. Are there any toy models where analogous Bousfield classes form a set with a clear meaning? The fundamental theorem of Hopkins, Neeman, Thomason, and others states that the analogue of the Bousfield classes in the derived category of quasi-coherent sheaves Dqc(X) form a set with a clear algebro-geometric description. However, Hopkins was actually motivated not by Ohkawa's theorem but by his own theorem with Smith in the triangulated subcategory SHc, consisting of compact objects in SH. Now the following questions naturally occur: (1) Having theorems of Ohkawa and Hopkins-Smith in SH, are there analogues for the Morel-Voevodsky A1-stable homotopy category SH(k), which subsumes SH when k is a subfield of C?, (2) Was it not natural for Hopkins to have considered Dqc(X)c instead of Dqc(X)? However, whereas there is a conceptually simple algebro-geometrical interpretation Dqc(X)c = Dperf(X), it is its close relative Dbcoh(X) that traditionally, ever since Oka and Cartan, has been intensively studied because of its rich geometric and physical information. This book contains developments for the rest of the story and much more, including the chromatics homotopy theory, which the Hopkins–Smith theorem is based upon, and applications of Lurie's higher algebra, all by distinguished contributors.

Homotopy Invariant Algebraic Structures

Homotopy Invariant Algebraic Structures PDF Author: Jean-Pierre Meyer
Publisher: American Mathematical Soc.
ISBN: 082181057X
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
This volume presents the proceedings of the conference held in honor of J. Michael Boardman's 60th birthday. It brings into print his classic work on conditionally convergent spectral sequences. Over the past 30 years, it has become evident that some of the deepest questions in algebra are best understood against the background of homotopy theory. Boardman and Vogt's theory of homotopy-theoretic algebraic structures and the theory of spectra, for example, were two benchmark breakthroughs underlying the development of algebraic $K$-theory and the recent advances in the theory of motives. The volume begins with short notes by Mac Lane, May, Stasheff, and others on the early and recent history of the subject. But the bulk of the volume consists of research papers on topics that have been strongly influenced by Boardman's work. Articles give readers a vivid sense of the current state of the theory of "homotopy-invariant algebraic structures". Also included are two major foundational papers by Goerss and Strickland on applications of methods of algebra (i.e., Dieudonné modules and formal schemes) to problems of topology. Boardman is known for the depth and wit of his ideas. This volume is intended to reflect and to celebrate those fine characteristics.

Stable Homotopy over the Steenrod Algebra

Stable Homotopy over the Steenrod Algebra PDF Author: John Harold Palmieri
Publisher: American Mathematical Soc.
ISBN: 0821826689
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
This title applys the tools of stable homotopy theory to the study of modules over the mod $p$ Steenrod algebra $A DEGREES{*}$. More precisely, let $A$ be the dual of $A DEGREES{*}$; then we study the category $\mathsf{stable}(A)$ of unbounded cochain complexes of injective comodules over $A$, in which the morphisms are cochain homotopy classes of maps. This category is triangulated. Indeed, it is a stable homotopy category, so we can use Brown representability, Bousfield localization, Brown-Comenetz duality, and other homotopy-theoretic tools to study it. One focus of attention is the analogue of the stable homotopy groups of spheres, which in this setting is the cohomology of $A$, $\mathrm{Ext}_A DEGREES{**}(\mathbf{F}_p, \mathbf{F}_p)$. This title also has nilpotence theorems, periodicity theorems, a convergent chromatic tower, and a nu

Axiomatic, Enriched and Motivic Homotopy Theory

Axiomatic, Enriched and Motivic Homotopy Theory PDF Author: John Greenlees
Publisher: Springer Science & Business Media
ISBN: 940070948X
Category : Mathematics
Languages : en
Pages : 396

Get Book Here

Book Description
The NATO Advanced Study Institute "Axiomatic, enriched and rna tivic homotopy theory" took place at the Isaac Newton Institute of Mathematical Sciences, Cambridge, England during 9-20 September 2002. The Directors were J.P.C.Greenlees and I.Zhukov; the other or ganizers were P.G.Goerss, F.Morel, J.F.Jardine and V.P.Snaith. The title describes the content well, and both the event and the contents of the present volume reflect recent remarkable successes in model categor ies, structured ring spectra and homotopy theory of algebraic geometry. The ASI took the form of a series of 15 minicourses and a few extra lectures, and was designed to provide background, and to bring the par ticipants up to date with developments. The present volume is based on a number of the lectures given during the workshop. The ASI was the opening workshop of the four month programme "New Contexts for Stable Homotopy Theory" which explored several themes in greater depth. I am grateful to the Isaac Newton Institute for providing such an ideal venue, the NATO Science Committee for their funding, and to all the speakers at the conference, whether or not they were able to contribute to the present volume. All contributions were refereed, and I thank the authors and referees for their efforts to fit in with the tight schedule. Finally, I would like to thank my coorganizers and all the staff at the Institute for making the ASI run so smoothly. J.P.C.GREENLEES.

Mathematics Going Forward

Mathematics Going Forward PDF Author: Jean-Michel Morel
Publisher: Springer Nature
ISBN: 3031122445
Category : Mathematics
Languages : en
Pages : 629

Get Book Here

Book Description
This volume is an original collection of articles by 44 leading mathematicians on the theme of the future of the discipline. The contributions range from musings on the future of specific fields, to analyses of the history of the discipline, to discussions of open problems and conjectures, including first solutions of unresolved problems. Interestingly, the topics do not cover all of mathematics, but only those deemed most worthy to reflect on for future generations. These topics encompass the most active parts of pure and applied mathematics, including algebraic geometry, probability, logic, optimization, finance, topology, partial differential equations, category theory, number theory, differential geometry, dynamical systems, artificial intelligence, theory of groups, mathematical physics and statistics.

Groups, Geometry, and Dynamics

Groups, Geometry, and Dynamics PDF Author:
Publisher:
ISBN:
Category : Group actions (Mathematics)
Languages : en
Pages : 704

Get Book Here

Book Description
Publishes research articles that focus on groups or group actions as well as articles in other areas of mathematics in which groups or group actions are used as a main tool. Covers all topics of modern group theory with preference given to geometric, asymptotic and combinatorial group theory, dynamics of group actions, probabilistic and analytical methods, interaction with ergodic theory and operator algebras, and other related fields.

Triangulated Categories

Triangulated Categories PDF Author: Thorsten Holm
Publisher: Cambridge University Press
ISBN: 1139488880
Category : Mathematics
Languages : en
Pages : 473

Get Book Here

Book Description
A 2010 collection of survey articles by leading experts covering fundamental aspects of triangulated categories, as well as applications in algebraic geometry, representation theory, commutative algebra, microlocal analysis and algebraic topology. This is a valuable reference for experts and a useful introduction for graduate students entering the field.

Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 888

Get Book Here

Book Description


Geometric Topology: Localization, Periodicity and Galois Symmetry

Geometric Topology: Localization, Periodicity and Galois Symmetry PDF Author: Dennis P. Sullivan
Publisher: Springer
ISBN: 9789048103508
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
The seminal ‘MIT notes’ of Dennis Sullivan were issued in June 1970 and were widely circulated at the time. The notes had a - jor in?uence on the development of both algebraic and geometric topology, pioneering the localization and completion of spaces in homotopy theory, including p-local, pro?nite and rational homotopy theory, le- ing to the solution of the Adams conjecture on the relationship between vector bundles and spherical ?brations, the formulation of the ‘Sullivan conjecture’ on the contractibility of the space of maps from the classifying space of a ?nite group to a ?nite dimensional CW complex, theactionoftheGalois groupoverQofthealgebraicclosureQof Q on smooth manifold structures in pro?nite homotopy theory, the K-theory orientation ofPL manifolds and bundles. Some of this material has been already published by Sullivan him- 1 self: in an article in the Proceedings of the 1970 Nice ICM, and in the 1974 Annals of Mathematics papers Genetics of homotopy theory and the Adams conjecture and The transversality character- 2 istic class and linking cycles in surgery theory . Many of the ideas originating in the notes have been the starting point of subsequent 1 reprinted at the end of this volume 2 joint with John Morgan vii viii 3 developments . However, the text itself retains a unique ?avour of its time, and of the range of Sullivan’s ideas.

Morava $K$-Theories and Localisation

Morava $K$-Theories and Localisation PDF Author: Mark Hovey
Publisher: American Mathematical Soc.
ISBN: 0821810790
Category : Mathematics
Languages : en
Pages : 114

Get Book Here

Book Description
This book is intended for graduate students and research mathematicians working in group theory and generalizations.