Author: Abubakar Mwasa
Publisher: Linköping University Electronic Press
ISBN: 9179296890
Category :
Languages : en
Pages : 40
Book Description
The thesis consists of three papers focussing on the study of nonlinear elliptic partial differential equations in a nonempty open subset Ω of the n-dimensional Euclidean space Rn. We study the existence and uniqueness of the solutions, as well as their behaviour near the boundary of Ω. The behaviour of the solutions at infinity is also discussed when Ω is unbounded. In Paper A, we consider a mixed boundary value problem for the p-Laplace equation ∆pu := div(|∇u| p−2∇u) = 0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. By a suitable transformation of the independent variables, this mixed problem is transformed into a Dirichlet problem for a degenerate (weighted) elliptic equation on a bounded set. By analysing the transformed problem in weighted Sobolev spaces, it is possible to obtain the existence of continuous weak solutions to the mixed problem, both for Sobolev and for continuous data on the Dirichlet part of the boundary. A characterisation of the boundary regularity of the point at infinity is obtained in terms of a new variational capacity adapted to the cylinder. In Paper B, we study Perron solutions to the Dirichlet problem for the degenerate quasilinear elliptic equation div A(x, ∇u) = 0 in a bounded open subset of Rn. The vector-valued function A satisfies the standard ellipticity assumptions with a parameter 1 < p < ∞ and a p-admissible weight w. For general boundary data, the Perron method produces a lower and an upper solution, and if they coincide then the boundary data are called resolutive. We show that arbitrary perturbations on sets of weighted p-capacity zero of continuous (and quasicontinuous Sobolev) boundary data f are resolutive, and that the Perron solutions for f and such perturbations coincide. As a consequence, it is also proved that the Perron solution with continuous boundary data is the unique bounded continuous weak solution that takes the required boundary data outside a set of weighted p-capacity zero. Some results in Paper C are a generalisation of those in Paper A, extended to quasilinear elliptic equations of the form div A(x, ∇u) = 0. Here, results from Paper B are used to prove the existence and uniqueness of continuous weak solutions to the mixed boundary value problem for continuous Dirichlet data. Regularity of the boundary point at infinity for the equation div A(x, ∇u) = 0 is characterised by a Wiener type criterion. We show that sets of Sobolev p-capacity zero are removable for the solutions and also discuss the behaviour of the solutions at ∞. In particular, a certain trichotomy is proved, similar to the Phragmén–Lindelöf principle.
Boundary Value Problems for Nonlinear Elliptic Equations in Divergence Form
Author: Abubakar Mwasa
Publisher: Linköping University Electronic Press
ISBN: 9179296890
Category :
Languages : en
Pages : 40
Book Description
The thesis consists of three papers focussing on the study of nonlinear elliptic partial differential equations in a nonempty open subset Ω of the n-dimensional Euclidean space Rn. We study the existence and uniqueness of the solutions, as well as their behaviour near the boundary of Ω. The behaviour of the solutions at infinity is also discussed when Ω is unbounded. In Paper A, we consider a mixed boundary value problem for the p-Laplace equation ∆pu := div(|∇u| p−2∇u) = 0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. By a suitable transformation of the independent variables, this mixed problem is transformed into a Dirichlet problem for a degenerate (weighted) elliptic equation on a bounded set. By analysing the transformed problem in weighted Sobolev spaces, it is possible to obtain the existence of continuous weak solutions to the mixed problem, both for Sobolev and for continuous data on the Dirichlet part of the boundary. A characterisation of the boundary regularity of the point at infinity is obtained in terms of a new variational capacity adapted to the cylinder. In Paper B, we study Perron solutions to the Dirichlet problem for the degenerate quasilinear elliptic equation div A(x, ∇u) = 0 in a bounded open subset of Rn. The vector-valued function A satisfies the standard ellipticity assumptions with a parameter 1 < p < ∞ and a p-admissible weight w. For general boundary data, the Perron method produces a lower and an upper solution, and if they coincide then the boundary data are called resolutive. We show that arbitrary perturbations on sets of weighted p-capacity zero of continuous (and quasicontinuous Sobolev) boundary data f are resolutive, and that the Perron solutions for f and such perturbations coincide. As a consequence, it is also proved that the Perron solution with continuous boundary data is the unique bounded continuous weak solution that takes the required boundary data outside a set of weighted p-capacity zero. Some results in Paper C are a generalisation of those in Paper A, extended to quasilinear elliptic equations of the form div A(x, ∇u) = 0. Here, results from Paper B are used to prove the existence and uniqueness of continuous weak solutions to the mixed boundary value problem for continuous Dirichlet data. Regularity of the boundary point at infinity for the equation div A(x, ∇u) = 0 is characterised by a Wiener type criterion. We show that sets of Sobolev p-capacity zero are removable for the solutions and also discuss the behaviour of the solutions at ∞. In particular, a certain trichotomy is proved, similar to the Phragmén–Lindelöf principle.
Publisher: Linköping University Electronic Press
ISBN: 9179296890
Category :
Languages : en
Pages : 40
Book Description
The thesis consists of three papers focussing on the study of nonlinear elliptic partial differential equations in a nonempty open subset Ω of the n-dimensional Euclidean space Rn. We study the existence and uniqueness of the solutions, as well as their behaviour near the boundary of Ω. The behaviour of the solutions at infinity is also discussed when Ω is unbounded. In Paper A, we consider a mixed boundary value problem for the p-Laplace equation ∆pu := div(|∇u| p−2∇u) = 0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. By a suitable transformation of the independent variables, this mixed problem is transformed into a Dirichlet problem for a degenerate (weighted) elliptic equation on a bounded set. By analysing the transformed problem in weighted Sobolev spaces, it is possible to obtain the existence of continuous weak solutions to the mixed problem, both for Sobolev and for continuous data on the Dirichlet part of the boundary. A characterisation of the boundary regularity of the point at infinity is obtained in terms of a new variational capacity adapted to the cylinder. In Paper B, we study Perron solutions to the Dirichlet problem for the degenerate quasilinear elliptic equation div A(x, ∇u) = 0 in a bounded open subset of Rn. The vector-valued function A satisfies the standard ellipticity assumptions with a parameter 1 < p < ∞ and a p-admissible weight w. For general boundary data, the Perron method produces a lower and an upper solution, and if they coincide then the boundary data are called resolutive. We show that arbitrary perturbations on sets of weighted p-capacity zero of continuous (and quasicontinuous Sobolev) boundary data f are resolutive, and that the Perron solutions for f and such perturbations coincide. As a consequence, it is also proved that the Perron solution with continuous boundary data is the unique bounded continuous weak solution that takes the required boundary data outside a set of weighted p-capacity zero. Some results in Paper C are a generalisation of those in Paper A, extended to quasilinear elliptic equations of the form div A(x, ∇u) = 0. Here, results from Paper B are used to prove the existence and uniqueness of continuous weak solutions to the mixed boundary value problem for continuous Dirichlet data. Regularity of the boundary point at infinity for the equation div A(x, ∇u) = 0 is characterised by a Wiener type criterion. We show that sets of Sobolev p-capacity zero are removable for the solutions and also discuss the behaviour of the solutions at ∞. In particular, a certain trichotomy is proved, similar to the Phragmén–Lindelöf principle.
Methods for Analysis of Nonlinear Elliptic Boundary Value Problems
Author: I. V. Skrypnik
Publisher: American Mathematical Soc.
ISBN: 9780821897560
Category : Mathematics
Languages : en
Pages : 370
Book Description
The theory of nonlinear elliptic equations is currently one of the most actively developing branches of the theory of partial differential equations. This book investigates boundary value problems for nonlinear elliptic equations of arbitrary order. In addition to monotone operator methods, a broad range of applications of topological methods to nonlinear differential equations is presented: solvability, estimation of the number of solutions, and the branching of solutions of nonlinear equations. Skrypnik establishes, by various procedures, a priori estimates and the regularity of solutions of nonlinear elliptic equations of arbitrary order. Also covered are methods of homogenization of nonlinear elliptic problems in perforated domains. The book is suitable for use in graduate courses in differential equations and nonlinear functional analysis.
Publisher: American Mathematical Soc.
ISBN: 9780821897560
Category : Mathematics
Languages : en
Pages : 370
Book Description
The theory of nonlinear elliptic equations is currently one of the most actively developing branches of the theory of partial differential equations. This book investigates boundary value problems for nonlinear elliptic equations of arbitrary order. In addition to monotone operator methods, a broad range of applications of topological methods to nonlinear differential equations is presented: solvability, estimation of the number of solutions, and the branching of solutions of nonlinear equations. Skrypnik establishes, by various procedures, a priori estimates and the regularity of solutions of nonlinear elliptic equations of arbitrary order. Also covered are methods of homogenization of nonlinear elliptic problems in perforated domains. The book is suitable for use in graduate courses in differential equations and nonlinear functional analysis.
Fully Nonlinear Elliptic Equations
Author: Luis A. Caffarelli
Publisher: American Mathematical Soc.
ISBN: 0821804375
Category : Mathematics
Languages : en
Pages : 114
Book Description
The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.
Publisher: American Mathematical Soc.
ISBN: 0821804375
Category : Mathematics
Languages : en
Pages : 114
Book Description
The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.
Degenerate Parabolic Equations
Author: Emmanuele DiBenedetto
Publisher: Springer Science & Business Media
ISBN: 1461208955
Category : Mathematics
Languages : en
Pages : 402
Book Description
Evolved from the author's lectures at the University of Bonn's Institut für angewandte Mathematik, this book reviews recent progress toward understanding of the local structure of solutions of degenerate and singular parabolic partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 1461208955
Category : Mathematics
Languages : en
Pages : 402
Book Description
Evolved from the author's lectures at the University of Bonn's Institut für angewandte Mathematik, this book reviews recent progress toward understanding of the local structure of solutions of degenerate and singular parabolic partial differential equations.
A Unified Approach to Boundary Value Problems
Author: Athanassios S. Fokas
Publisher: SIAM
ISBN: 089871706X
Category : Mathematics
Languages : en
Pages : 328
Book Description
This text presents a new approach to analysing initial-boundary value problems for integrable partial differential equations.
Publisher: SIAM
ISBN: 089871706X
Category : Mathematics
Languages : en
Pages : 328
Book Description
This text presents a new approach to analysing initial-boundary value problems for integrable partial differential equations.
Mathematical Scattering Theory
Author: D. R. Yafaev
Publisher: American Mathematical Soc.
ISBN: 9780821897379
Category : Mathematics
Languages : en
Pages : 356
Book Description
Preliminary facts Basic concepts of scattering theory Further properties of the WO Scattering for relatively smooth perturbations The general setup in stationary scattering theory Scattering for perturbations of trace class type Properties of the scattering matrix (SM) The spectral shift function (SSF) and the trace formula
Publisher: American Mathematical Soc.
ISBN: 9780821897379
Category : Mathematics
Languages : en
Pages : 356
Book Description
Preliminary facts Basic concepts of scattering theory Further properties of the WO Scattering for relatively smooth perturbations The general setup in stationary scattering theory Scattering for perturbations of trace class type Properties of the scattering matrix (SM) The spectral shift function (SSF) and the trace formula
Regularity Estimates for Nonlinear Elliptic and Parabolic Problems
Author: John Lewis
Publisher: Springer Science & Business Media
ISBN: 3642271448
Category : Mathematics
Languages : en
Pages : 259
Book Description
The issue of regularity has played a central role in the theory of Partial Differential Equations almost since its inception, and despite the tremendous advances made it still remains a very fruitful research field. In particular considerable strides have been made in regularity estimates for degenerate and singular elliptic and parabolic equations over the last several years, and in many unexpected and challenging directions. Because of all these recent results, it seemed high time to create an overview that would highlight emerging trends and issues in this fascinating research topic in a proper and effective way. The course aimed to show the deep connections between these topics and to open new research directions through the contributions of leading experts in all of these fields.
Publisher: Springer Science & Business Media
ISBN: 3642271448
Category : Mathematics
Languages : en
Pages : 259
Book Description
The issue of regularity has played a central role in the theory of Partial Differential Equations almost since its inception, and despite the tremendous advances made it still remains a very fruitful research field. In particular considerable strides have been made in regularity estimates for degenerate and singular elliptic and parabolic equations over the last several years, and in many unexpected and challenging directions. Because of all these recent results, it seemed high time to create an overview that would highlight emerging trends and issues in this fascinating research topic in a proper and effective way. The course aimed to show the deep connections between these topics and to open new research directions through the contributions of leading experts in all of these fields.
Numerical Methods for Elliptic and Parabolic Partial Differential Equations
Author: Peter Knabner
Publisher: Springer Nature
ISBN: 3030793850
Category : Mathematics
Languages : en
Pages : 811
Book Description
This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.
Publisher: Springer Nature
ISBN: 3030793850
Category : Mathematics
Languages : en
Pages : 811
Book Description
This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.
Elliptic Partial Differential Equations
Author: Lucio Boccardo
Publisher: Walter de Gruyter
ISBN: 3110315424
Category : Mathematics
Languages : en
Pages : 204
Book Description
Elliptic partial differential equations is one of the main and most active areas in mathematics. This book is devoted to the study of linear and nonlinear elliptic problems in divergence form, with the aim of providing classical results, as well as more recent developments about distributional solutions. For this reason this monograph is addressed to master's students, PhD students and anyone who wants to begin research in this mathematical field.
Publisher: Walter de Gruyter
ISBN: 3110315424
Category : Mathematics
Languages : en
Pages : 204
Book Description
Elliptic partial differential equations is one of the main and most active areas in mathematics. This book is devoted to the study of linear and nonlinear elliptic problems in divergence form, with the aim of providing classical results, as well as more recent developments about distributional solutions. For this reason this monograph is addressed to master's students, PhD students and anyone who wants to begin research in this mathematical field.
Convex Analysis and Nonlinear Geometric Elliptic Equations
Author: Ilya J. Bakelman
Publisher: Springer Science & Business Media
ISBN: 3642698816
Category : Mathematics
Languages : en
Pages : 524
Book Description
Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 3642698816
Category : Mathematics
Languages : en
Pages : 524
Book Description
Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.