Author: C. R. MacCluer
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN:
Category : Mathematics
Languages : en
Pages : 372
Book Description
For a first course in the topic using the modern, norm-based Sobolev techniques not currently available in published format. Major concepts are presented with minimal possible detail and details are pushed into the exercises, omitted, or postponed until later sections. Includes worked examples of pr
Boundary Value Problems and Orthogonal Expansions
Author: C. R. MacCluer
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN:
Category : Mathematics
Languages : en
Pages : 372
Book Description
For a first course in the topic using the modern, norm-based Sobolev techniques not currently available in published format. Major concepts are presented with minimal possible detail and details are pushed into the exercises, omitted, or postponed until later sections. Includes worked examples of pr
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN:
Category : Mathematics
Languages : en
Pages : 372
Book Description
For a first course in the topic using the modern, norm-based Sobolev techniques not currently available in published format. Major concepts are presented with minimal possible detail and details are pushed into the exercises, omitted, or postponed until later sections. Includes worked examples of pr
Boundary Value Problems and Fourier Expansions
Author: Charles R. MacCluer
Publisher: Dover Publications
ISBN: 9780486788678
Category :
Languages : en
Pages : 384
Book Description
Based on modern Sobolev methods, this text integrates numerical methods and symbolic manipulation into an elegant viewpoint that is consonant with implementation by digital computer. 2004 edition. Includes 64 figures. Exercises.
Publisher: Dover Publications
ISBN: 9780486788678
Category :
Languages : en
Pages : 384
Book Description
Based on modern Sobolev methods, this text integrates numerical methods and symbolic manipulation into an elegant viewpoint that is consonant with implementation by digital computer. 2004 edition. Includes 64 figures. Exercises.
Boundary Value Problems
Author: David L. Powers
Publisher: Elsevier
ISBN: 1483269787
Category : Mathematics
Languages : en
Pages : 249
Book Description
Boundary Value Problems is a text material on partial differential equations that teaches solutions of boundary value problems. The book also aims to build up intuition about how the solution of a problem should behave. The text consists of seven chapters. Chapter 1 covers the important topics of Fourier Series and Integrals. The second chapter deals with the heat equation, introducing separation of variables. Material on boundary conditions and Sturm-Liouville systems is included here. Chapter 3 presents the wave equation; estimation of eigenvalues by the Rayleigh quotient is mentioned briefly. The potential equation is the topic of Chapter 4, which closes with a section on classification of partial differential equations. Chapter 5 briefly covers multidimensional problems and special functions. The last two chapters, Laplace Transforms and Numerical Methods, are discussed in detail. The book is intended for third and fourth year physics and engineering students.
Publisher: Elsevier
ISBN: 1483269787
Category : Mathematics
Languages : en
Pages : 249
Book Description
Boundary Value Problems is a text material on partial differential equations that teaches solutions of boundary value problems. The book also aims to build up intuition about how the solution of a problem should behave. The text consists of seven chapters. Chapter 1 covers the important topics of Fourier Series and Integrals. The second chapter deals with the heat equation, introducing separation of variables. Material on boundary conditions and Sturm-Liouville systems is included here. Chapter 3 presents the wave equation; estimation of eigenvalues by the Rayleigh quotient is mentioned briefly. The potential equation is the topic of Chapter 4, which closes with a section on classification of partial differential equations. Chapter 5 briefly covers multidimensional problems and special functions. The last two chapters, Laplace Transforms and Numerical Methods, are discussed in detail. The book is intended for third and fourth year physics and engineering students.
Elementary Differential Equations with Boundary Value Problems
Author: William F. Trench
Publisher: Thomson Brooks/Cole
ISBN:
Category : Mathematics
Languages : en
Pages : 764
Book Description
Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material.
Publisher: Thomson Brooks/Cole
ISBN:
Category : Mathematics
Languages : en
Pages : 764
Book Description
Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material.
Partial Differential Equations and Boundary-Value Problems with Applications
Author: Mark A. Pinsky
Publisher: American Mathematical Soc.
ISBN: 0821868896
Category : Mathematics
Languages : en
Pages : 545
Book Description
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Publisher: American Mathematical Soc.
ISBN: 0821868896
Category : Mathematics
Languages : en
Pages : 545
Book Description
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Student Solutions Manual, Partial Differential Equations & Boundary Value Problems with Maple
Author: George A. Articolo
Publisher: Academic Press
ISBN: 012381412X
Category : Computers
Languages : en
Pages : 733
Book Description
Student Solutions Manual, Partial Differential Equations & Boundary Value Problems with Maple
Publisher: Academic Press
ISBN: 012381412X
Category : Computers
Languages : en
Pages : 733
Book Description
Student Solutions Manual, Partial Differential Equations & Boundary Value Problems with Maple
Elementary Applied Partial Differential Equations
Author: Richard Haberman
Publisher:
ISBN: 9780132638074
Category : Boundary value problems
Languages : en
Pages : 0
Book Description
This work aims to help the beginning student to understand the relationship between mathematics and physical problems, emphasizing examples and problem-solving.
Publisher:
ISBN: 9780132638074
Category : Boundary value problems
Languages : en
Pages : 0
Book Description
This work aims to help the beginning student to understand the relationship between mathematics and physical problems, emphasizing examples and problem-solving.
Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version)
Author: Richard Haberman
Publisher: Pearson
ISBN: 9780134995434
Category : Boundary value problems
Languages : en
Pages : 784
Book Description
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.
Publisher: Pearson
ISBN: 9780134995434
Category : Boundary value problems
Languages : en
Pages : 784
Book Description
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.
Schaum's Outline of Fourier Analysis with Applications to Boundary Value Problems
Author: Murray R. Spiegel
Publisher: McGraw Hill Professional
ISBN: 9780070602199
Category : Juvenile Nonfiction
Languages : en
Pages : 220
Book Description
For use as supplement or as textbook.
Publisher: McGraw Hill Professional
ISBN: 9780070602199
Category : Juvenile Nonfiction
Languages : en
Pages : 220
Book Description
For use as supplement or as textbook.
Partial Differential Equations in Classical Mathematical Physics
Author: Isaak Rubinstein
Publisher: Cambridge University Press
ISBN: 9780521558464
Category : Mathematics
Languages : en
Pages : 704
Book Description
The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.
Publisher: Cambridge University Press
ISBN: 9780521558464
Category : Mathematics
Languages : en
Pages : 704
Book Description
The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.