Author: Alexander V. Bobylev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110550989
Category : Mathematics
Languages : en
Pages : 260
Book Description
This two-volume monograph is a comprehensive and up-to-date presentation of the theory and applications of kinetic equations. The first volume covers many-particle dynamics, Maxwell models of the Boltzmann equation (including their exact and self-similar solutions), and hydrodynamic limits beyond the Navier-Stokes level.
Boltzmann Equation, Maxwell Models, and Hydrodynamics beyond Navier-Stokes
Landau Equation, Boltzmann-type Equations, Discrete Models, and Numerical Methods
Author: Alexander V. Bobylev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110551004
Category : Mathematics
Languages : en
Pages : 212
Book Description
This two-volume monograph is a comprehensive and up-to-date presentation of the theory and applications of kinetic equations. The second volume covers discrete velocity models of the Boltzmann equation, results on the Landau equation, and numerical (deterministic and stochastic) methods for the solution of kinetic equations.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110551004
Category : Mathematics
Languages : en
Pages : 212
Book Description
This two-volume monograph is a comprehensive and up-to-date presentation of the theory and applications of kinetic equations. The second volume covers discrete velocity models of the Boltzmann equation, results on the Landau equation, and numerical (deterministic and stochastic) methods for the solution of kinetic equations.
From Kinetic Theory to Turbulence Modeling
Author: Paolo Barbante
Publisher: Springer Nature
ISBN: 9811964629
Category : Mathematics
Languages : en
Pages : 286
Book Description
The book collects relevant contributions presented at a conference, organized in honour of Carlo Cercignani, that took place at Politecnico di Milano on May 24–28, 2021. Different research areas characterizing the scientific work of Carlo Cercignani have been considered with a particular focus on: mathematical and numerical methods for kinetic equations; kinetic modelling of gas mixtures and polyatomic gases; applications of the Boltzmann equation to electron transport, social phenomena and epidemic spread; turbulence modelling; the Einstein Classical Program; Dynamical Systems Theory.
Publisher: Springer Nature
ISBN: 9811964629
Category : Mathematics
Languages : en
Pages : 286
Book Description
The book collects relevant contributions presented at a conference, organized in honour of Carlo Cercignani, that took place at Politecnico di Milano on May 24–28, 2021. Different research areas characterizing the scientific work of Carlo Cercignani have been considered with a particular focus on: mathematical and numerical methods for kinetic equations; kinetic modelling of gas mixtures and polyatomic gases; applications of the Boltzmann equation to electron transport, social phenomena and epidemic spread; turbulence modelling; the Einstein Classical Program; Dynamical Systems Theory.
Numerical Simulation of Incompressible Viscous Flow
Author: Roland Glowinski
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110785013
Category : Mathematics
Languages : en
Pages : 232
Book Description
This text on finite element-based computational methods for solving incompressible viscous fluid flow problems shows readers how to split complicated computational fluid dynamics problems into a sequence of simpler sub-problems. A methodology for solving more advanced applications such as hemispherical cavity flow, cavity flow of an Oldroyd-B viscoelastic flow, and particle interaction in an Oldroyd-B type viscoelastic fluid is also presented.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110785013
Category : Mathematics
Languages : en
Pages : 232
Book Description
This text on finite element-based computational methods for solving incompressible viscous fluid flow problems shows readers how to split complicated computational fluid dynamics problems into a sequence of simpler sub-problems. A methodology for solving more advanced applications such as hemispherical cavity flow, cavity flow of an Oldroyd-B viscoelastic flow, and particle interaction in an Oldroyd-B type viscoelastic fluid is also presented.
Neural Networks and Numerical Analysis
Author: Bruno Després
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110783185
Category : Mathematics
Languages : en
Pages : 174
Book Description
This book uses numerical analysis as the main tool to investigate methods in machine learning and A.I. The efficiency of neural network representation on for polynomial functions is studied in detail, together with an original description of the Latin hypercube method. In addition, unique features include the use of Tensorflow for implementation on session and the application n to the construction of new optimized numerical schemes.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110783185
Category : Mathematics
Languages : en
Pages : 174
Book Description
This book uses numerical analysis as the main tool to investigate methods in machine learning and A.I. The efficiency of neural network representation on for polynomial functions is studied in detail, together with an original description of the Latin hypercube method. In addition, unique features include the use of Tensorflow for implementation on session and the application n to the construction of new optimized numerical schemes.
Metamaterial Analysis and Design
Author: Habib Ammari
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110784963
Category : Mathematics
Languages : en
Pages : 122
Book Description
Metamaterials are advanced composite materials which have exotic and powerful properties. Their complicated microstructures make metamaterials challenging to model, requiring the use of sophisticated mathematical techniques. This book uses a from-first-principles approach (based on boundary integral methods and asymptotic analysis) to study a class of high-contrast metamaterials. These mathematical techniques are applied to the problem of designing graded metamaterials that replicate the function of the cochlea.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110784963
Category : Mathematics
Languages : en
Pages : 122
Book Description
Metamaterials are advanced composite materials which have exotic and powerful properties. Their complicated microstructures make metamaterials challenging to model, requiring the use of sophisticated mathematical techniques. This book uses a from-first-principles approach (based on boundary integral methods and asymptotic analysis) to study a class of high-contrast metamaterials. These mathematical techniques are applied to the problem of designing graded metamaterials that replicate the function of the cochlea.
Finite Difference Methods for Nonlinear Evolution Equations
Author: Zhi-Zhong Sun
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110796015
Category : Mathematics
Languages : en
Pages : 432
Book Description
Introduces recent research results of finite difference methods including important nonlinear evolution equations in applied science. The presented difference schemes include nonlinear difference schemes and linearized difference schemes. Features widely used nonlinear evolution equations such as Burgers equation, regular long wave equation, Schrodinger equation and more. Each PDE model includes details on efficiency, stability, and convergence.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110796015
Category : Mathematics
Languages : en
Pages : 432
Book Description
Introduces recent research results of finite difference methods including important nonlinear evolution equations in applied science. The presented difference schemes include nonlinear difference schemes and linearized difference schemes. Features widely used nonlinear evolution equations such as Burgers equation, regular long wave equation, Schrodinger equation and more. Each PDE model includes details on efficiency, stability, and convergence.
The Lattice Boltzmann Equation
Author: Sauro Succi
Publisher: Oxford University Press
ISBN: 0199592357
Category : Mathematics
Languages : en
Pages : 789
Book Description
An introductory textbook to Lattice Boltzmann methods in computational fluid dynamics, aimed at a broad audience of scientists working with flowing matter. LB has known a burgeoning growth of applications, especially in connection with the simulation of complex flows, and also on the methodological side.
Publisher: Oxford University Press
ISBN: 0199592357
Category : Mathematics
Languages : en
Pages : 789
Book Description
An introductory textbook to Lattice Boltzmann methods in computational fluid dynamics, aimed at a broad audience of scientists working with flowing matter. LB has known a burgeoning growth of applications, especially in connection with the simulation of complex flows, and also on the methodological side.
Richardson Extrapolation
Author: Zahari Zlatev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110533006
Category : Mathematics
Languages : en
Pages : 310
Book Description
Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book. Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. Contents The basic properties of Richardson extrapolation Richardson extrapolation for explicit Runge-Kutta methods Linear multistep and predictor-corrector methods Richardson extrapolation for some implicit methods Richardson extrapolation for splitting techniques Richardson extrapolation for advection problems Richardson extrapolation for some other problems General conclusions
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110533006
Category : Mathematics
Languages : en
Pages : 310
Book Description
Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book. Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. Contents The basic properties of Richardson extrapolation Richardson extrapolation for explicit Runge-Kutta methods Linear multistep and predictor-corrector methods Richardson extrapolation for some implicit methods Richardson extrapolation for splitting techniques Richardson extrapolation for advection problems Richardson extrapolation for some other problems General conclusions
From Kinetic Models to Hydrodynamics
Author: Matteo Colangeli
Publisher: Springer Science & Business Media
ISBN: 1461463068
Category : Science
Languages : en
Pages : 102
Book Description
From Kinetic Models to Hydrodynamics serves as an introduction to the asymptotic methods necessary to obtain hydrodynamic equations from a fundamental description using kinetic theory models and the Boltzmann equation. The work is a survey of an active research area, which aims to bridge time and length scales from the particle-like description inherent in Boltzmann equation theory to a fully established “continuum” approach typical of macroscopic laws of physics.The author sheds light on a new method—using invariant manifolds—which addresses a functional equation for the nonequilibrium single-particle distribution function. This method allows one to find exact and thermodynamically consistent expressions for: hydrodynamic modes; transport coefficient expressions for hydrodynamic modes; and transport coefficients of a fluid beyond the traditional hydrodynamic limit. The invariant manifold method paves the way to establish a needed bridge between Boltzmann equation theory and a particle-based theory of hydrodynamics. Finally, the author explores the ambitious and longstanding task of obtaining hydrodynamic constitutive equations from their kinetic counterparts. The work is intended for specialists in kinetic theory—or more generally statistical mechanics—and will provide a bridge between a physical and mathematical approach to solve real-world problems.
Publisher: Springer Science & Business Media
ISBN: 1461463068
Category : Science
Languages : en
Pages : 102
Book Description
From Kinetic Models to Hydrodynamics serves as an introduction to the asymptotic methods necessary to obtain hydrodynamic equations from a fundamental description using kinetic theory models and the Boltzmann equation. The work is a survey of an active research area, which aims to bridge time and length scales from the particle-like description inherent in Boltzmann equation theory to a fully established “continuum” approach typical of macroscopic laws of physics.The author sheds light on a new method—using invariant manifolds—which addresses a functional equation for the nonequilibrium single-particle distribution function. This method allows one to find exact and thermodynamically consistent expressions for: hydrodynamic modes; transport coefficient expressions for hydrodynamic modes; and transport coefficients of a fluid beyond the traditional hydrodynamic limit. The invariant manifold method paves the way to establish a needed bridge between Boltzmann equation theory and a particle-based theory of hydrodynamics. Finally, the author explores the ambitious and longstanding task of obtaining hydrodynamic constitutive equations from their kinetic counterparts. The work is intended for specialists in kinetic theory—or more generally statistical mechanics—and will provide a bridge between a physical and mathematical approach to solve real-world problems.