Author: Tim McGloughlin
Publisher: Springer Science & Business Media
ISBN: 3642180957
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
Cardiovascular disease is the leading cause of morbidity and premature death of modern era medicine. It is estimated that approximately 81 million people in the United States (US) currently have one or more of the many forms of cardiovascular disease, resulting in 1 in every 2.8 deaths, or 900,000 deaths per year. 40% of all deaths in Europe are a result of cardiovascular disease in people under the age of 75. Aneurysms form a significant portion of these cardiovascular related deaths and are defined as a permanent and irreversible localised dilation of a blood vessel greater than 50% of its normal diameter. Although aneurysms can form in any blood vessel, the more lethal aneurysms develop in the cranial arteries, and in the thoracic aorta and abdominal aorta. Frequently aneurysms are undetected and if left untreated may eventually expand until rupture with very high levels of morbidity and mortality. The biomechanics and mechanobiology of aneursymal diseases are not fully understood and this monograph aims to provide new insights into aneurysm aetiology and behavior based on the most recent biomechanics research related to this important topic. The contributors to this volume bring together a unique blend of expertise in experimental, computational and tissue biomechanics relating to aneurysm behavior and enable the reader to gain a fresh understanding of key factors influencing aneurysm behavior and treatment. Biological risk factors such as tobacco smoking, sex, age, hypertension, family history and mechanobiological risk factors such as aneurysm geometry and shape as well as mechanical properties of the diseased tissues are considered in detail as are many of the diagnostic and treatment options.
Biomechanics and Mechanobiology of Aneurysms
Author: Tim McGloughlin
Publisher: Springer Science & Business Media
ISBN: 3642180957
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
Cardiovascular disease is the leading cause of morbidity and premature death of modern era medicine. It is estimated that approximately 81 million people in the United States (US) currently have one or more of the many forms of cardiovascular disease, resulting in 1 in every 2.8 deaths, or 900,000 deaths per year. 40% of all deaths in Europe are a result of cardiovascular disease in people under the age of 75. Aneurysms form a significant portion of these cardiovascular related deaths and are defined as a permanent and irreversible localised dilation of a blood vessel greater than 50% of its normal diameter. Although aneurysms can form in any blood vessel, the more lethal aneurysms develop in the cranial arteries, and in the thoracic aorta and abdominal aorta. Frequently aneurysms are undetected and if left untreated may eventually expand until rupture with very high levels of morbidity and mortality. The biomechanics and mechanobiology of aneursymal diseases are not fully understood and this monograph aims to provide new insights into aneurysm aetiology and behavior based on the most recent biomechanics research related to this important topic. The contributors to this volume bring together a unique blend of expertise in experimental, computational and tissue biomechanics relating to aneurysm behavior and enable the reader to gain a fresh understanding of key factors influencing aneurysm behavior and treatment. Biological risk factors such as tobacco smoking, sex, age, hypertension, family history and mechanobiological risk factors such as aneurysm geometry and shape as well as mechanical properties of the diseased tissues are considered in detail as are many of the diagnostic and treatment options.
Publisher: Springer Science & Business Media
ISBN: 3642180957
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
Cardiovascular disease is the leading cause of morbidity and premature death of modern era medicine. It is estimated that approximately 81 million people in the United States (US) currently have one or more of the many forms of cardiovascular disease, resulting in 1 in every 2.8 deaths, or 900,000 deaths per year. 40% of all deaths in Europe are a result of cardiovascular disease in people under the age of 75. Aneurysms form a significant portion of these cardiovascular related deaths and are defined as a permanent and irreversible localised dilation of a blood vessel greater than 50% of its normal diameter. Although aneurysms can form in any blood vessel, the more lethal aneurysms develop in the cranial arteries, and in the thoracic aorta and abdominal aorta. Frequently aneurysms are undetected and if left untreated may eventually expand until rupture with very high levels of morbidity and mortality. The biomechanics and mechanobiology of aneursymal diseases are not fully understood and this monograph aims to provide new insights into aneurysm aetiology and behavior based on the most recent biomechanics research related to this important topic. The contributors to this volume bring together a unique blend of expertise in experimental, computational and tissue biomechanics relating to aneurysm behavior and enable the reader to gain a fresh understanding of key factors influencing aneurysm behavior and treatment. Biological risk factors such as tobacco smoking, sex, age, hypertension, family history and mechanobiological risk factors such as aneurysm geometry and shape as well as mechanical properties of the diseased tissues are considered in detail as are many of the diagnostic and treatment options.
Calcific Aortic Valve Disease
Author: Elena Aikawa
Publisher: BoD – Books on Demand
ISBN: 9535111507
Category : Medical
Languages : en
Pages : 544
Book Description
Due to population aging, calcific aortic valve disease (CAVD) has become the most common heart valve disease in Western countries. No therapies exist to slow this disease progression, and surgical valve replacement is the only effective treatment. Calcific Aortic Valve Disease covers the contemporary understanding of basic valve biology and the mechanisms of CAVD, provides novel insights into the genetics, proteomics, and metabolomics of CAVD, depicts new strategies in heart valve tissue engineering and regenerative medicine, and explores current treatment approaches. As we are on the verge of understanding the mechanisms of CAVD, we hope that this book will enable readers to comprehend our current knowledge and focus on the possibility of preventing disease progression in the future.
Publisher: BoD – Books on Demand
ISBN: 9535111507
Category : Medical
Languages : en
Pages : 544
Book Description
Due to population aging, calcific aortic valve disease (CAVD) has become the most common heart valve disease in Western countries. No therapies exist to slow this disease progression, and surgical valve replacement is the only effective treatment. Calcific Aortic Valve Disease covers the contemporary understanding of basic valve biology and the mechanisms of CAVD, provides novel insights into the genetics, proteomics, and metabolomics of CAVD, depicts new strategies in heart valve tissue engineering and regenerative medicine, and explores current treatment approaches. As we are on the verge of understanding the mechanisms of CAVD, we hope that this book will enable readers to comprehend our current knowledge and focus on the possibility of preventing disease progression in the future.
Cardiovascular Biomechanics
Author: Peter R. Hoskins
Publisher: Springer
ISBN: 3319464078
Category : Medical
Languages : en
Pages : 462
Book Description
This book provides a balanced presentation of the fundamental principles of cardiovascular biomechanics research, as well as its valuable clinical applications. Pursuing an integrated approach at the interface of the life sciences, physics and engineering, it also includes extensive images to explain the concepts discussed. With a focus on explaining the underlying principles, this book examines the physiology and mechanics of circulation, mechanobiology and the biomechanics of different components of the cardiovascular system, in-vivo techniques, in-vitro techniques, and the medical applications of this research. Written for undergraduate and postgraduate students and including sample problems at the end of each chapter, this interdisciplinary text provides an essential introduction to the topic. It is also an ideal reference text for researchers and clinical practitioners, and will benefit a wide range of students and researchers including engineers, physicists, biologists and clinicians who are interested in the area of cardiovascular biomechanics.
Publisher: Springer
ISBN: 3319464078
Category : Medical
Languages : en
Pages : 462
Book Description
This book provides a balanced presentation of the fundamental principles of cardiovascular biomechanics research, as well as its valuable clinical applications. Pursuing an integrated approach at the interface of the life sciences, physics and engineering, it also includes extensive images to explain the concepts discussed. With a focus on explaining the underlying principles, this book examines the physiology and mechanics of circulation, mechanobiology and the biomechanics of different components of the cardiovascular system, in-vivo techniques, in-vitro techniques, and the medical applications of this research. Written for undergraduate and postgraduate students and including sample problems at the end of each chapter, this interdisciplinary text provides an essential introduction to the topic. It is also an ideal reference text for researchers and clinical practitioners, and will benefit a wide range of students and researchers including engineers, physicists, biologists and clinicians who are interested in the area of cardiovascular biomechanics.
Transport in Biological Media
Author: Sid M. Becker
Publisher: Newnes
ISBN: 0123978491
Category : Technology & Engineering
Languages : en
Pages : 575
Book Description
Transport in Biological Media is a solid resource of mathematical models for researchers across a broad range of scientific and engineering problems such as the effects of drug delivery, chemotherapy, or insulin intake to interpret transport experiments in areas of cutting edge biological research. A wide range of emerging theoretical and experimental mathematical methodologies are offered by biological topic to appeal to individual researchers to assist them in solving problems in their specific area of research. Researchers in biology, biophysics, biomathematics, chemistry, engineers and clinical fields specific to transport modeling will find this resource indispensible. - Provides detailed mathematical model development to interpret experiments and provides current modeling practices - Provides a wide range of biological and clinical applications - Includes physiological descriptions of models
Publisher: Newnes
ISBN: 0123978491
Category : Technology & Engineering
Languages : en
Pages : 575
Book Description
Transport in Biological Media is a solid resource of mathematical models for researchers across a broad range of scientific and engineering problems such as the effects of drug delivery, chemotherapy, or insulin intake to interpret transport experiments in areas of cutting edge biological research. A wide range of emerging theoretical and experimental mathematical methodologies are offered by biological topic to appeal to individual researchers to assist them in solving problems in their specific area of research. Researchers in biology, biophysics, biomathematics, chemistry, engineers and clinical fields specific to transport modeling will find this resource indispensible. - Provides detailed mathematical model development to interpret experiments and provides current modeling practices - Provides a wide range of biological and clinical applications - Includes physiological descriptions of models
Mechanics of Biological Tissue
Author: Gerhard A. Holzapfel
Publisher: Springer Science & Business Media
ISBN: 354031184X
Category : Science
Languages : en
Pages : 510
Book Description
The mechanics of biological tissues is a multidisciplinary and rapidly expanding area of research. This book points to important directions combining mechanical sciences with the new developments in biology. It delivers articles on mechanics of tissues at the molecular, cellular, tissue and organ levels.
Publisher: Springer Science & Business Media
ISBN: 354031184X
Category : Science
Languages : en
Pages : 510
Book Description
The mechanics of biological tissues is a multidisciplinary and rapidly expanding area of research. This book points to important directions combining mechanical sciences with the new developments in biology. It delivers articles on mechanics of tissues at the molecular, cellular, tissue and organ levels.
An Introduction to Biomechanics
Author: Jay D. Humphrey
Publisher: Springer Science & Business Media
ISBN: 1489903259
Category : Science
Languages : en
Pages : 642
Book Description
Designed to meet the needs of undergraduate students, "Introduction to Biomechanics" takes the fresh approach of combining the viewpoints of both a well-respected teacher and a successful student. With an eye toward practicality without loss of depth of instruction, this book seeks to explain the fundamental concepts of biomechanics. With the accompanying web site providing models, sample problems, review questions and more, Introduction to Biomechanics provides students with the full range of instructional material for this complex and dynamic field.
Publisher: Springer Science & Business Media
ISBN: 1489903259
Category : Science
Languages : en
Pages : 642
Book Description
Designed to meet the needs of undergraduate students, "Introduction to Biomechanics" takes the fresh approach of combining the viewpoints of both a well-respected teacher and a successful student. With an eye toward practicality without loss of depth of instruction, this book seeks to explain the fundamental concepts of biomechanics. With the accompanying web site providing models, sample problems, review questions and more, Introduction to Biomechanics provides students with the full range of instructional material for this complex and dynamic field.
Computational Biomechanics for Medicine
Author: Barry Doyle
Publisher: Springer
ISBN: 149390745X
Category : Technology & Engineering
Languages : en
Pages : 128
Book Description
One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences and medicine. The Computational Biomechanics for Medicine series provides an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This 5th edition comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis and both patient-specific fluid dynamics and solid mechanic simulations.
Publisher: Springer
ISBN: 149390745X
Category : Technology & Engineering
Languages : en
Pages : 128
Book Description
One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences and medicine. The Computational Biomechanics for Medicine series provides an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This 5th edition comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis and both patient-specific fluid dynamics and solid mechanic simulations.
Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics
Author: Stéphane Avril
Publisher: Springer
ISBN: 3319450719
Category : Technology & Engineering
Languages : en
Pages : 161
Book Description
The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.
Publisher: Springer
ISBN: 3319450719
Category : Technology & Engineering
Languages : en
Pages : 161
Book Description
The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.
Biomechanics of Soft Tissue in Cardiovascular Systems
Author: Gerhard A. Holzapfel
Publisher: Springer Science & Business Media
ISBN: 9783211004555
Category : Technology & Engineering
Languages : en
Pages : 360
Book Description
The book is written by leading experts in the field presenting an up-to-date view of the subject matter in a didactically sound manner. It presents a review of the current knowledge of the behaviour of soft tissues in the cardiovascular system under mechanical loads, and the importance of constitutive laws in understanding the underlying mechanics is highlighted. Cells are also described together with arteries, tendons and ligaments, heart, and other biological tissues of current research interest in biomechanics. This includes experimental, continuum mechanical and computational perspectives, with the emphasis on nonlinear behaviour, and the simulation of mechanical procedures such as balloon angioplasty.
Publisher: Springer Science & Business Media
ISBN: 9783211004555
Category : Technology & Engineering
Languages : en
Pages : 360
Book Description
The book is written by leading experts in the field presenting an up-to-date view of the subject matter in a didactically sound manner. It presents a review of the current knowledge of the behaviour of soft tissues in the cardiovascular system under mechanical loads, and the importance of constitutive laws in understanding the underlying mechanics is highlighted. Cells are also described together with arteries, tendons and ligaments, heart, and other biological tissues of current research interest in biomechanics. This includes experimental, continuum mechanical and computational perspectives, with the emphasis on nonlinear behaviour, and the simulation of mechanical procedures such as balloon angioplasty.
Cardiovascular Mechanics
Author: Michel R. Labrosse
Publisher: CRC Press
ISBN: 1315280272
Category : Medical
Languages : en
Pages : 320
Book Description
The objective of this book is to illustrate in specific detail how cardiovascular mechanics stands as a common pillar supporting such different clinical successes as drugs for high blood pressure, prosthetic heart valves and coronary artery bypass grafting, among others. This information is conveyed through a comprehensive treatment of the overarching principles and theories that are behind mechanobiological processes, aortic and arterial mechanics, atherosclerosis, blood and microcirculation, hear valve mechanics, as well as medical devices and drugs. Examines all major theoretical and practical aspects of mechanical forces related to the cardiovascular system. Discusses a unique coverage of mechanical changes related to an aging cardiovascular system. Provides an overview of experimental methods in cardiovascular mechanics. Written by world-class researchers from Canada, the US and EU. Extensive references are provided at the end of each chapter to enhance further study. Michel R. Labrosse is the founder of the Cardiovascular Mechanics Laboratory at the University of Ottawa, where he is a full professor within the Department of Mechanical Engineering. He has been an active researcher in academia along with being heavily associated with the University of Ottawa Heart Institute. He has authored or co-authored over 90 refereed communications, and supervised or co-supervised over 40 graduate students and post-docs.
Publisher: CRC Press
ISBN: 1315280272
Category : Medical
Languages : en
Pages : 320
Book Description
The objective of this book is to illustrate in specific detail how cardiovascular mechanics stands as a common pillar supporting such different clinical successes as drugs for high blood pressure, prosthetic heart valves and coronary artery bypass grafting, among others. This information is conveyed through a comprehensive treatment of the overarching principles and theories that are behind mechanobiological processes, aortic and arterial mechanics, atherosclerosis, blood and microcirculation, hear valve mechanics, as well as medical devices and drugs. Examines all major theoretical and practical aspects of mechanical forces related to the cardiovascular system. Discusses a unique coverage of mechanical changes related to an aging cardiovascular system. Provides an overview of experimental methods in cardiovascular mechanics. Written by world-class researchers from Canada, the US and EU. Extensive references are provided at the end of each chapter to enhance further study. Michel R. Labrosse is the founder of the Cardiovascular Mechanics Laboratory at the University of Ottawa, where he is a full professor within the Department of Mechanical Engineering. He has been an active researcher in academia along with being heavily associated with the University of Ottawa Heart Institute. He has authored or co-authored over 90 refereed communications, and supervised or co-supervised over 40 graduate students and post-docs.